Система Orphus

Главная > Раздел Физика > Полная версия


DAVID DEUTSCH


The Fabric of Reality


Allen lane the penguin press



Д. Дойч


Структура Реальности


Перевод с английского Н.А. Зубченко


под общей редакцией академика РАН В.А.Садовничего


РХД — Москва-Ижевск 2001






Посвящается памяти Карла Поппера, Хью Эверетта
и Алана Тьюринга, а также Ричарду Доукинсу.
В этой книге их идеи восприняты всерьез.








Содержание

Стр.

Предисловие редакции

6

Благодарности

6

Предисловие

7

Глава 1. Теория Всего

8

Глава 2. Тени

37

Глава 3. Решение задач

60

Глава 4. Критерии реальности

77

Глава 5. Виртуальная реальность

102

Глава 6. Универсальность и пределы вычислений

127

Глава 7. Беседа о доказательстве (или «Дэвид и Крипто-индуктивист»)

145

Глава 8. Важность жизни

170

Глава 9. Квантовые компьютеры

197

Глава 10. Природа математики

226

Глава 11. Время: первая квантовая концепция

262

Глава 12. Путешествие во времени

293

Глава 13. Четыре нити

325

Глава 14. Конец Вселенной

347

Библиография

370


Предисловие редакции

Предлагаемая Вашему вниманию книга известного специалиста по квантовым компьютерам и квантовым вычислениям Дэвида Дой­ча своим выходом во многом обязана поддержке ректора Московско­го Государственного университета академика РАН В. А. Садовничего. В этой книге автор не только систематически рассматривает физи­ческие принципы нового описания реальности, но и предлагает свои любопытные философские рассуждения. Более подробно с различными аспектами квантовых компьютеров и квантовых вычислений читатель может ознакомиться на страницах журнала «Квантовые компьютеры и квантовые вычисления», который выпускается научно-издательским центром «Регулярная и хаотическая динамика».


Благодарности

Развитию идей, описанных в данной книге, в значительной степени способствовали беседы с Брайсом ДеВиттом, Артуром Экертом, Майк­лом Локвудом, Энрико Родриго, Деннисом Скиамой, Фрэнком Типле­ром, Джоном Уилером и Колей Вольфом.

Я выражаю благодарность своим друзьям и коллегам Рут Чанг, Артуру Экерту, Дэвиду Джонсон-Дэвису, Майклу Локвуду, Энрико Род­риго и Коле Вульфу, своей маме Тикве Дойч и своим издателям Кэро­лайн Найт и Рави Мирчандани (издательство Penguin Books) и Джону Вудрафу, и особенно Саре Лоренс за внимательное и критичное чтение первых черновиков этой книги, а также за внесение множества исправ­лений и улучшений. Также я признателен всем, кто читал и комменти­ровал части рукописи, включая Харви Брауна, Стива Грэхема, Роселлу Лупачини, Свена Олафа Нюберга, Оливера и Гарриет Стримпел и осо­бенно Ричарда Доукинса и Фрэнка Типлера.




Предисловие

Если и существует единая мотивация мировоззрения, изложенного в этой книге, она заключена в том, что сейчас мы обладаем нескольки­ми чрезвычайно глубокими теориями о структуре реальности, главным образом благодаря ряду экстраординарных научных открытий. Если мы хотим понять мир не поверхностно, а более глубоко, нам помогут эти теории и разум, а не наши предрассудки, приобретенные мнения и даже не здравый смысл. Наши лучшие теории не только более истин­ны, чем здравый смысл, в них гораздо больше смысла, чем в здравом смысле. Мы должны воспринимать их серьезно: не просто как практи­ческую основу относящихся к ним областей, а как объяснения мира. Я полагаю, что мы сможем достигнуть величайшего понимания, ес­ли будем рассматривать их не по отдельности, а совместно, поскольку между ними существует сложная связь.

Может показаться странным, почему это предложение попытать­ся сформировать рациональное и понятное мировоззрение на основе наших лучших основных теорий должно быть новым или противоречи­вым. Тем не менее, на практике оно таковым и является. Одна из при­чин заключается в том, что каждая из этих теорий, когда её восприни­мают серьезно, дает результаты, противоречащие тому, что подсказы­вает нам интуиция. Поэтому предпринимаются всевозможные попытки избежать столкновения с этими результатами: теории специально из­меняют или объясняют иначе; произвольно сужают область их приме­нения или просто используют их на практике, не делая общих выводов. Я буду критиковать некоторые подобные попытки (ни одна из которых, по-моему, и гроша ломаного не стоит), но только в том случае, когда такая критика будет целесообразна для объяснения самих теорий. Глав­ная цель этой книги — не защищать эти теории, а исследовать, какой была бы структура реальности, если бы эти теории оказались истин­ными.  {8} 




ГЛАВА 1

Теория Всего

Помню, когда я был ещё ребенком, мне говорили, что в древние времена очень образованный человек мог знать все, что было известно. Кроме того, мне говорили, что в наше время известно так много, что ни один человек не в состоянии изучить больше крошечной частички этого знания даже за всю свою жизнь. Последнее удивляло и разочаровывало меня. Я просто отказывался в это поверить. Вместе с тем, я не знал, как оправдать свое неверие. Но такое положение вещей меня определенно не устраивало, и я завидовал древним ученым.

Не то чтобы я хотел заучить все факты, перечисленные в миро­вых энциклопедиях: напротив, я ненавидел зубрежку. Не таким спо­собом я надеялся получить возможность узнать все, что только было известно. Даже если бы мне сказали, что ежедневно появляется столько публикаций, сколько человек не сможет прочитать и за целую жизнь, или, что науке известно 600000 видов жуков, это не разочаровало бы меня. Я не горел желанием проследить за полетом каждого воробья. Более того, я никогда не считал, что древний ученый, который, как предполагалось, знал все, что было известно, стал бы занимать себя чем-то подобным. Я иначе представлял себе то, что следует считать известным. Под «известным» я подразумевал понятым.

Сама мысль о том, что один человек в состоянии понять все, что понято, может показаться фантастической, однако фантастики в ней куда меньше, чем в мысли о том, что один человек сможет запомнить все известные факты. К примеру, никто не сможет запомнить все из­вестные результаты научных наблюдений даже в такой узкой области, как изучение движения планет, но многие астрономы понимают это движение настолько полно, насколько оно понято. Это становится воз­можным, потому что понимание зависит не от знания множества фак­тов как таковых, а от построения правильных концепций, объяснений и теорий. Одна сравнительно простая и понятная теория может охватить бесконечно много неудобоваримых фактов. Лучшей теорией планетар­ного движения является общая теория относительности Эйнштейна, которая в самом начале двадцатого века вытеснила теории гравитации  {9}  и движения Ньютона. Теория Эйнштейна точно предсказывает не толь­ко принцип движения планет, но и любое другое влияние гравитации, причем точность этого предсказания соответствует нашим самым точ­ным измерениям. Дело в том, что, когда теория предсказывает что-ли­бо «в принципе», это означает, что предсказание логически истекает из теории, даже если на практике для получения некоторых таких пред­сказаний необходимо произвести больше вычислений, чем мы способны осуществить технологически или физически в той вселенной, которую мы себе представляем.

Способность предсказывать или описывать что-либо, даже доста­точно точно, совсем не равноценна пониманию этого. В физике предска­зания и описания часто выражаются в виде математических формул. Допустим, что я запомнил формулу, из которой при наличии времени и желания мог бы вычислить любое положение планет, которое когда-ли­бо было записано в архивах астрономов. Что же я в этом случае выиграл бы по сравнению с непосредственным заучиванием архивов? Форму­лу проще запомнить, ну а дальше: посмотреть число в архивах может быть даже удобнее, чем вычислить его из формулы. Истинное преиму­щество формулы в том, что её можно использовать в бесконечном мно­жестве случаев помимо архивных данных, например, для предсказания результатов будущих наблюдений. С помощью формулы можно также получить более точное историческое положение планет, потому что ар­хивные данные содержат ошибки наблюдений. Однако даже несмотря на то, что формула суммирует бесконечно бóльшее количество фактов по сравнению с архивами, знать её — не значит понимать движение планет. Факты невозможно понять, попросту собрав их в формулу, так же как нельзя понять их, просто записав или запомнив. Факты можно понять только после объяснения. К счастью, наши лучшие теории наря­ду с точными предсказаниями содержат глубокие объяснения. Напри­мер, общая теория относительности объясняет гравитацию на основе новой четырехмерной геометрии искривленного пространства и време­ни. Она точно объясняет, каким образом эта геометрия воздействует на материю и подвергается воздействию материи. В этом объяснении и заключается полное содержание теории; а предсказания относительно движения планет — это всего лишь некоторые умозаключения, которые мы можем сделать из объяснения.

Общая теория относительности так важна не потому, что она мо­жет чуть более точно предсказать движение планет, чем теория Ньютона,  {10}  а потому, что она открывает и объясняет такие аспекты действи­тельности, как искривление пространства и времени, о которых ранее не подозревали. Это типично для научного объяснения. Научные тео­рии объясняют объекты и явления в нашей жизни на основе скрытой действительности, которую мы непосредственно не ощущаем. Тем не менее, способность теории объяснить то, что мы ощущаем, — не самое ценное её качество. Самое ценное её качество заключается в том, что она объясняет саму структуру реальности. Как мы увидим, одно из самых ценных, значимых и полезных качеств человеческой мысли — её способность открывать и объяснять структуру реальности.

Однако некоторые философы, и даже ученые, недооценивают роль объяснения в науке. Для них основная цель научной теории заключа­ется не в объяснении чего-либо, а в предсказании результатов экспе­риментов: все содержание теории заключено в формуле предсказания. Они считают, что теория может дать своим предсказаниям любое не противоречащее ей объяснение, а может и вовсе не давать такового до тех пор, пока её предсказания верны. Такой взгляд называется инстру­ментализмом (поскольку в этом случае теория — всего лишь «инстру­мент» для предсказания). Саму мысль о том, что наука может помочь нам понять скрытую реальность, объясняющую наши наблюдения, ин­струменталисты считают ложной и тщеславной. Они не понимают, ка­ким образом то, о чем говорит научная теория помимо предсказания результатов экспериментов, может быть чем-то бóльшим, чем пустые слова. Объяснения, в частности, они считают простой психологической опорой: чем-то вроде художественных вкраплений, которые мы вклю­чаем в теории, чтобы сделать их более занимательными и легко запо­минающимися. Лауреат Нобелевской премии, физик Стивен Вайнберг, явно говорил с позиций инструментализма, когда следующим образом прокомментировал объяснение гравитации Эйнштейном:

«Важно иметь возможность предсказать картины звездного неба на фотоснимках астрономов, частоту спектральных линий и т. п., а то, припишем ли мы эти прогнозы физическому воздействию гравитаци­онных полей на движение планет и фотонов [как это было в физике до Эйнштейна] или искривлению пространства и времени, просто не имеет значения.» (Gravitation and Cosmology, с. 147).

Вайнберг и другие инструменталисты ошибаются. То, чему мы приписываем изображения на фотошаблонах астрономов, имеет зна­чение, и не только для физиков-теоретиков вроде меня, у которых  {11}  же­лание в бóльшей степени понять мир становится мотивацией для выра­жения теорий в виде формул и их изучения. (Я уверен, что эта моти­вация присуща и Вайнбергу: вряд ли его стимулирует одно лишь же­лание предсказать изображения и спектры!) Дело в том, что даже для чисто практического применения прежде всего важны объяснительные возможности теории, а уж потом, в качестве дополнения, — её предсказательные возможности. Если это вас удивляет, представьте, что на Земле появился инопланетный ученый и преподнес нам ультратехноло­гичный «предсказатель», который может предсказать результат любого эксперимента, но без каких-либо объяснений. Если верить инструмен­талистам, то как только мы получим этот предсказатель, наши научные теории нам будут нужны разве что для развлечения. Но так ли это? Ка­ким образом предсказатель можно было бы использовать практически? В некотором смысле предсказатель содержал бы знания, необходимые для того, чтобы построить, скажем, космический корабль. Но насколько он бы пригодился нам при строительстве этого корабля, или при созда­нии другого подобного предсказателя, или даже при усовершенствова­нии мышеловки? Предсказатель всего лишь предсказывает результаты экспериментов. Следовательно, чтобы получить возможность пользо­ваться предсказателем, нам, прежде всего, нужно знать, о результа­тах каких экспериментов его можно спрашивать. Если бы мы задали предсказателю чертеж космического корабля и информацию о предпо­лагаемом испытательном полете, он мог бы сказать нам, как поведет себя корабль во время этого полета. Но спроектировать космический корабль предсказатель не смог бы. И даже если бы он сообщил нам, что спроектированный нами космический корабль взорвется при запуске, он не смог бы сказать нам, как предотвратить этот взрыв. Эту проб­лему снова пришлось бы решать нам. А прежде чем её решить, прежде чем приступить хоть к какому-то усовершенствованию конструкции, нам пришлось бы понять, кроме всего прочего, принцип работы кос­мического корабля. И только тогда у нас появилась бы возможность выяснить причину взрыва при запуске. Предсказание — пусть даже самое совершенное, универсальное предсказание — не способно заме­нить объяснение.

Точно так же предсказатель не смог бы предоставить нам ни од­ной новой теории и в научных исследованиях. Вот если бы у нас уже была теория, и мы придумали бы эксперимент для её проверки, тогда можно было бы спросить предсказатель, что произойдет, если подвергнуть  {12}  теорию этому испытанию. Таким образом, предсказатель заме­нил бы вовсе не теории — он заменил бы эксперименты. Он избавил бы нас от затрат на испытательные лаборатории и ускорители частиц. Вместо того чтобы строить опытные образцы космических кораблей и рисковать жизнью летчиков-испытателей, все испытания мы могли бы проводить на земле, посадив летчиков в пилотажные тренажеры, управляемые предсказателем.

Предсказатель мог бы быть весьма полезен в различных ситуаци­ях, но его полезность всегда бы зависела от способности людей решать научные задачи точно так же, как они вынуждены делать это сейчас, а именно, изобретая объяснительные теории. Он даже не заменил бы все эксперименты, поскольку на практике его способность предсказать результат какого-то частного эксперимента зависела бы от того, что проще: достаточно точно описать этот эксперимент, чтобы предсказа­тель дал пригодный ответ, или провести эксперимент в действительнос­ти. В конце концов, для связи с предсказателем понадобился бы своего рода «пользовательский интерфейс». Возможно, описание изобретения пришлось бы вводить в предсказатель на каком-то стандартном языке. Некоторые эксперименты с трудом можно было бы описать на этом язы­ке. На практике описание многих экспериментов оказалось бы слишком сложным для ввода. Таким образом, предсказатель имел бы те же ос­новные преимущества и недостатки, что и любой другой источник экс­периментальных данных, и был бы полезен только в тех случаях, когда обращение к нему оказывалось бы удобнее, чем к другим источникам. Кроме того, такой предсказатель уже существует совсем рядом, — это физический мир. Он сообщает нам результат любого возможного экс­перимента, если мы спрашиваем его на правильном языке (т. е. если мы проводим эксперимент), хотя в некоторых случаях нам не очень удоб­но «вводить описание эксперимента» в требуемой форме (т. е. создавать некий аппарат и управлять им). Однако мир не дает объяснений.

В некоторых практических случаях, например, при прогнозе по­годы, предсказатель, обладающий исключительно предсказательной функцией, устроил бы нас не меньше, чем объяснительная теория. Но даже в этом случае для целесообразного использования предсказателя предсказанный прогноз погоды должен быть полным и совершенным. На практике прогнозы погоды неполны и несовершенны, и, чтобы ском­пенсировать неточность, в них включают объяснения того, как метео­рологи получили тот или иной прогноз. Объяснения позволяют нам  {13}  су­дить о надежности прогноза и вывести дальнейший прогноз для нашего места расположения или наших нужд. К примеру, для меня есть раз­ница, чем будет вызвана ветреная погода, которую прогнозируют на завтра: близостью района с высоким атмосферным давлением или бо­лее отдаленным ураганом. В последнем случае я бы предпринял больше предосторожностей. Метеорологам самим необходимы объяснительные теории о погоде, чтобы они могли предположить, какие приближения можно допустить при компьютерном моделировании погоды, какие до­полнительные наблюдения обеспечат более точный и своевременный прогноз погоды и т. п.

Таким образом, идеал инструменталистов, представленный в ви­де нашего воображаемого предсказателя, а именно, научной теории, лишенной своего объяснительного содержания, будет полезен в стро­го ограниченном числе случаев. Так будем благодарны, что реальные научные теории не похожи на этот идеал и что, в действительности, ученые к нему не стремятся.

Крайняя форма инструментализма, называемая позитивизм (или логический позитивизм), утверждает, что все положения, отличные от тех, которые описывают или предсказывают наблюдения, не только из­лишни, но и бессмысленны. И хотя в соответствии со своими же кри­териями в этой доктрине отсутствует смысл, она, тем не менее, гос­подствовала в науке всю первую половину двадцатого столетия! Идеи инструменталистов и позитивистов широко распространены даже се­годня. Причина такой их убедительности заключается в том, что, хотя предсказание не является целью науки, оно является частью характе­ристического метода науки. Этот научный метод включает теорети­ческое принятие новой теории для объяснения некоторого класса яв­лений, затем проведение решающего экспериментального исследования, эксперимента, для которого старая теория предсказывает один види­мый результат, а новая теория — другой. Затем теорию, предсказания которой оказались ложными, отвергают. Таким образом, результат ре­шающего эксперимента, который позволяет сделать выбор между дву­мя теориями, зависит от предсказания теорий, а не от их объяснения. Именно отсюда истекает ошибочное представление, что в научной тео­рии нет ничего, кроме предсказаний. Однако экспериментальное иссле­дование — это далеко не единственный процесс, связанный с ростом научного знания. Подавляющее большинство теорий отвергли не пото­му, что их не подтвердили экспериментальные исследования, а потому,  {14}  что у них были плохие объяснения. Мы отвергаем такие теории, да­же не проверяя их. Например, рассмотрим следующую теорию: съев килограмм травы, можно вылечиться от простуды. Эта теория делает предсказание, которое можно проверить на опыте: если люди попро­буют лечиться травой и найдут это неэффективным, появятся доказа­тельства ложности этой теории. Но эту теорию никогда не проверяли на опыте и, возможно, никогда не проверят, потому что она не дает объяс­нений: она не объясняет ни процесс лечения, ни что бы то ни было ещё. Мы абсолютно правильно считаем её ложной. Всегда есть бесконечно много возможных теорий такого рода, совместимых с существующими наблюдениями и предлагающих новые предсказания, и у нас не хвати­ло бы ни времени, ни средств, чтобы проверить их все. Мы проверяем новые теории, которые выглядят более обещающими для объяснения чего-либо, чем те, которые широко распространены сегодня.

Сказать, что предсказание — цель научной теории, значит перепу­тать средства и цели. Точно так же можно сказать, что цель космичес­кого корабля — сжигать топливо. На самом деле, горение топлива — это лишь один из многих процессов, которые корабль должен выполнить для достижения своей действительной цели, то есть транспортировки полезной нагрузки из одной точки космического пространства в дру­гую. Проведение экспериментальных исследований — это лишь один из многих процессов, которые должна осуществить теория для дости­жения истинной цели науки, которая заключается в объяснении мира.

Как я уже сказал, частично объяснения составляются на основе то­го, что мы непосредственно не наблюдаем: атомы и силы; внутренние области звезд и вращение галактик; прошлое и будущее; законы при­роды. Чем глубже объяснение, тем к более отдаленным от настоящего опыта категориям оно должно обращаться. Однако эти категории не вымышлены: напротив, они являются частью самой структуры реаль­ности.

Объяснения часто порождают предсказания, по крайней мере, в принципе. В самом деле, если что-то, в принципе, можно предсказать, то достаточно полное объяснение должно, в принципе, предсказать это полностью (помимо всего прочего). Однако можно объяснить и понять многие изначально непредсказуемые вещи. Например, вы не можете предсказать, какие номера выпадут на честной (т. е. беспристрастной) рулетке. Но если вы поймете, что в конструкции и действии рулетки делает её беспристрастной, то вы сможете объяснить, почему  {15}  невоз­можно предсказать номера. И опять: простое знание того, что рулетка беспристрастна, не равноценно пониманию того, что делает её беспри­страстной.

И я говорю именно о понимании, а не просто о знании (или описа­нии, или предсказании). Поскольку понимание приходит через объясни­тельные теории, а эти теории могут быть схожи, быстрое увеличение количества записанных фактов не обязательно усложняет понимание всего, что понято. Тем не менее, большинство людей считает (и имен­но это говорили мне тогда, в детстве), что с ошеломляющей скоростью растет не только количество записанных фактов, но и количество и сложность теорий, через которые мы познаем мир. Следовательно (го­ворят они), не важно, было или нет такое время, когда один человек мог понять все, что было понято, в наше время это точно невозможно, и это становится все более и более невозможным по мере роста наше­го знания. Может показаться, что каждый раз, когда появляется новое объяснение или методика, существенная для данного предмета, к спис­ку, который должен выучить любой желающий понять этот предмет, следует добавить ещё одну теорию; когда же количество таких теорий в любом предмете становится слишком большим, появляются специа­лизации. Физика, к примеру, разделилась на астрофизику, термодина­мику, физику частиц, теорию квантового поля и многие другие науки. Теоретическая основа каждой из этих наук, по крайней мере, так же обширна, как вся физика сто лет назад, и многие науки уже распа­даются на подспециализации. Кажется, что, чем больше открытий мы делаем, тем дальше и безвозвратнее нас уносит в век специалистов, и тем больше удаляются от нас те предполагаемые древние времена, когда понимание обычного человека могло охватить все, что только было понято.

Человека, столкнувшегося с этим огромным и быстро растущим меню теорий, созданных человеческой расой, можно простить за его сомнения в том, что один индивидуум способен за свою жизнь отве­дать каждое блюдо и самостоятельно, как это могло быть когда-то, оце­нить все известные рецепты. Однако объяснение — необычная пища: бóльшую порцию не обязательно труднее проглотить. Теорию может вытеснить новая теория, более точная, с бóльшим количеством объяс­нений, но и более простая для понимания. В этом случае старая теория становится лишней, и мы понимаем больше, а учим меньше, чем рань­ше. Именно это и произошло, когда теория Николая Коперника о том,  {16}  что Земля движется вокруг Солнца, вытеснила сложную систему Птолемея, которая помещала Землю в центр Вселенной. Иногда новая те­ория может упрощать существующую, как в случае, когда арабские (десятичные) цифры заменили римские. (В данном случае теория вы­ражена неявно. Каждое обозначение определяет конкретные операции, положения и мысли о числах проще других и, следовательно, воплощает теорию, по которой операции с числами становятся более простыми и эффективными). Новая теория может объединять две старые теории, обеспечивая большее понимание, чем при отдельном использовании ста­рых теорий, как это произошло, когда Майкл Фарадей и Джеймс Кларк Максвелл объединили теории электричества и магнетизма в одну тео­рию электромагнетизма. Косвенно, более полные объяснения, в любом предмете направлены на усовершенствование методов, понятий и язы­ка, с помощью которых мы пытаемся понять другие предметы, и, та­ким образом, наше знание в целом может стать более простым для понимания.

Общеизвестно, что часто, когда новые теории таким образом заме­няют старые, последние не забываются навсегда. Даже римские циф­ры всё ещё используют сегодня в определенных случаях. Громоздкие методы, с помощью которых люди когда-то вычисляли, что XIX, ум­ноженное на XVII, равно CCCXXIII, уже не применяются всерьез, но даже сейчас они несомненно известны и понятны кому-то, например, историкам математики. Означает ли это, что человек не может понять «все, что понято», не зная римских цифр и их загадочной арифмети­ки? Совсем нет. Современный математик, который по какой-то причи­не никогда не слышал о римских цифрах, тем не менее, уже обладает полным пониманием связанной с ними математики. Узнав о римских цифрах, этот математик приобретет не новое понимание, а всего лишь новые факты — исторические факты, факты о свойствах каких-то про­извольно обозначенных символов, а не новое знание о самих числах. Он уподобится зоологу, который учится переводить названия видов на иностранный язык, или астрофизику, который узнает, каким образом люди различных культур распределяют звезды по созвездиям.

Необходимо ли знание арифметики римских цифр для понимания истории — отдельный вопрос. Допустим, что какая-то историческая теория — какое-то объяснение — зависела от определенных методов, которые древние римляне использовали для умножения (так же, как, например, оказалось, что их особые методы создания водопроводов из  {17}  свинцовых груб, отравлявших питьевую воду, внесли свой вклад в па­дение Римской Империи). Затем, если мы хотим понять историю, а сле­довательно, и все, что понято, то нам следует узнать, какие это были методы. Но дело в том, что ни одно современное историческое объяс­нение не связано с методикой умножения чисел, так что наши записи относительно этих методов — не более чем констатация фактов. Все, что понято, может быть понято и без заучивания этих фактов. Мы в любое время можем посмотреть их в справочнике, если, например, расшифровываем древний текст, в котором они упоминаются.

Постоянно разграничивая понимание и «просто» знание, я не хочу преуменьшить важность записанной, но не объясненной информации. Такая информация безусловно важна для всего: от размножения микро­организма (который содержит такую информацию в молекулах ДНК) до самого абстрактного человеческого мышления. Чем же тогда отли­чается понимание от простого знания? Что есть объяснение, в отличие от простой формулировки факта, коей являются правильное описание или предсказание? На практике мы обычно достаточно быстро чувст­вуем разницу. Мы осознаем, когда чего-то не понимаем, даже если мы можем точно описать это и дать этому точное предсказание (например, течение известной болезни неизвестного происхождения), и также мы знаем, что объяснение поможет нам лучше понять это. Но дать точ­ное определение понятий «объяснение» или «понимание» сложно. Грубо говоря, они скорее отвечают на вопрос «почему», чем на вопрос «что»; затрагивают внутреннюю суть дел; описывают реальное, а не кажуще­еся состояние вещей; говорят о том, что должно быть, а не что случает­ся: определяют законы природы, а не эмпирические зависимости. Эти понятия можно отнести к связности, утонченности и простоте в про­тивоположность произвольности и сложности, хотя ни одному из этих понятий также нельзя дать простое определение. Но в любом случае, понимание — это одна из высших функций человеческого мозга и ра­зума, и эта функция уникальна. Многие другие физические системы, например, мозг животных, компьютеры и другие машины, могут срав­нивать факты и действовать в соответствии с ними. Но в настоящее время мы не знаем ничего, кроме человеческого разума, что было бы способно понять объяснение или желало бы получить его прежде всего. Каждое открытие нового объяснения и каждое понимание существу­ющего объяснения зависит от уникальной человеческой способности мыслить творчески.  {18} 

Можно считать, что теория римских цифр утратила свое объяс­нительное значение и превратилась в простое описание фактов. Подоб­ное устаревание теорий происходит постоянно по мере роста нашего знания. Изначально римская система цифр действительно формирова­ла часть концептуальной и теоретической системы взглядов, которая помогала людям, использующим эти цифры, понимать мир. Но сейчас то понимание, которое когда-то достигалось таким образом, — не более чем крошечный аспект гораздо более глубокого понимания, воплощен­ного в современных математических теориях и неявно в современных условных обозначениях.

Это иллюстрирует ещё одно свойство понимания. Возможно понять что-то, не осознавая, что понимаешь это, или даже не уделяя этому особого внимания. Возможно, это звучит парадоксально, но смысл глу­боких обобщенных объяснений состоит в том, что они охватывают не только знакомые ситуации, но и незнакомые. Если бы вы были совре­менным математиком и впервые столкнулись с римскими цифрами, возможно, вы бы сразу не осознали, что уже поняли их. Сначала вам бы пришлось выучить факты относительно того, что это такое, а потом поразмышлять над этими фактами в свете вашего настоящего понима­ния математики. Но завершив это, вы могли бы, оглянувшись назад, сказать: «Да, в римской системе цифр для меня нет ничего нового, кро­ме фактов». Именно это мы имеем в виду, когда говорим, что объясни­тельная роль римских цифр полностью устарела.

Точно так же, когда я говорю, что понимаю, каким образом кривизна пространства и времени влияет на движение планет да­же в других солнечных системах, о которых я, возможно, никогда не слышал, я не утверждаю, что могу вспомнить без дальнейших размышлений объяснение всех подробностей вращения и колебаний орбиты любой планеты. Я имею в виду, что понимаю теорию, со­держащую все эти объяснения, и поэтому могу точно вывести лю­бое из них, если получу некоторые факты о конкретной планете. Сделав это, я, оглянувшись назад, смогу сказать в прошлое: «Да, в движении этой планеты я не вижу ничего, кроме фактов, которые не объясняет общая теория относительности». Мы понимаем струк­туру реальности, только понимая теории, объясняющие её. А по­скольку они объясняют больше, чем мы непосредственно осозна­ем, мы можем понять больше, чем непосредственно осознаем, что поняли.  {19} 

Я не утверждаю, что, когда мы понимаем теорию, мы обязатель­но понимаем все, что она может объяснить. В очень глубокой теории осознание того, что она объясняет данное явление, само по себе может быть значительным открытием, требующим независимого объяснения. Например, квазары — чрезвычайно яркие источники излучения в цент­ре некоторых галактик — в течение многих лет были одной из загадок астрофизики. Когда-то даже полагали, что для того, чтобы их объяс­нить, потребуется новая физика, но сейчас мы считаем, что их объяс­няет как общая теория относительности, так и другие теории, которые были известны ещё до открытия квазаров. Мы полагаем, что квазары состоят из горячей материи в процессе падения в черные дыры (разру­шенные звезды с таким мощным гравитационным полем, что ничто не может избежать его). Однако потребовались многие годы наблюдений и теоретических исследований, прежде чем мы пришли к этому выводу. Теперь, когда мы считаем, что нашли меру понимания квазаров, мы не думаем, что и раньше обладали этим пониманием. Хотя мы и объ­яснили квазары через существующие теории, мы получили абсолютно новое понимание. Насколько сложно дать определение объяснению, на­столько же сложно определить, считать ли вспомогательное объяснение независимой составляющей того, что понято, или относить его к более глубокой теории. Это сложно определить, но не так сложно осознать: на практике, когда нам дают новое объяснение, мы понимаем, что оно новое. И снова: разница связана с творческими способностями. Объяс­нить движение какой-то планеты человеку, который понимает общую теорию относительности, — чисто механическая задача, хотя она мо­жет оказаться очень сложной. Но, чтобы использовать существующую теорию для объяснения квазаров, необходимо творческое мышление. Таким образом, чтобы понять все, что понято в астрофизике на сегод­няшний день, вам придется подробно изучить теорию квазаров. Но вам не придется изучать орбиту какой-то конкретной планеты.

Таким образом, несмотря на то, что количество известных нам те­орий, да и записанных фактов растет как снежный ком, сама структура не становится более сложной для понимания. Дело в том, что, становясь более подробными и многочисленными, отдельные теории постепенно «теряют актуальность», так как понимание, которое они содержат, пе­реходит к глубоким обобщенным теориям. А количество последних все уменьшается, но они становятся более глубокими и более обобщенны­ми. Под «более обобщенными» я подразумеваю, что каждая из этих теорий  {20}  приводит больше доводов, охватывает большее количество ситу­аций, чем несколько отдельных теорий ранее. Под «более глубокими» я понимаю, что каждая из них объясняет больше (охватывает большее понимание), чем её предшественники, вместе взятые.

Если бы вы захотели построить большое сооружение, мост или собор, несколько веков назад, вам понадобился бы проектировщик. Он бы знал, что необходимо сделать, чтобы обеспечить прочность и устойчивость конструкции с минимальными возможными усилиями и затратами. Он не смог бы выразить бóльшую часть этого знания на языке математики и физики, как мы можем сделать это сегод­ня. Вместо этого он положился бы, главным образом, на свою инту­ицию, навыки и эмпирические зависимости, которые узнал во време­на своего ученичества, а впоследствии, возможно, усовершенствовал, руководствуясь догадками и долгим опытом работы. Но даже эта ин­туиция, эти навыки и эмпирические зависимости на самом деле были явными и неявными теориями, содержавшими реальное знание пред­метов, которые сегодня мы называем инженерным делом и архитек­турой. Именно из-за знания этих теорий, пусть очень неточных по сравнению с существующими сегодня и применимых в небольшом чис­ле случаев, вы и наняли бы этого проектировщика. Восхищаясь стро­ениями, простоявшими века, люди часто забывают, что видят лишь то, что уцелело. Подавляющее большинство сооружений, построенных в средние века и раньше, давно развалилось, часто вскоре после то­го, как они были построены. Особенно это касалось новых сооружений. Считалось доказанным, что любое нововведение может стать причи­ной катастрофы, и строители редко отступали от традиционных кон­струкций и методов. В наши дни, напротив, большая редкость, ес­ли какое-то строение (пусть даже непохожее ни на что, построенное раньше) развалится из-за неправильной конструкции. Все, что мог построить древний квалифицированный строитель, его современные коллеги могут построить лучше и с меньшими усилиями. Они так­же могут соорудить такие строения, о которых он вряд ли мечтал, например, небоскребы или космические станции. Они могут исполь­зовать такие материалы, как стекловолокно или железобетон, о ко­торых он никогда не слышал и которые вряд ли смог бы использо­вать, даже если бы они каким-то образом у него появились, т. к. он имел весьма смутные и неточные представления о поведении матери­алов.  {21} 

Мы достигли настоящего уровня знаний не потому, что собрали много теорий, подобных той, что была известна древнему строителю. Наше знание, явное и неявное, не просто больше, оно отличается по своей структуре. Как я уже сказал, современных теорий меньше, но они более обобщенные и более глубокие. В каждой ситуации, с которой сталкивался проектировщик, выполняя какую-то работу, — к примеру, выбирая толщину несущей стены, — он пользовался довольно специфи­ческой интуицией или эмпирической зависимостью, которая примени­тельно к нестандартным случаям могла дать безнадежно неправиль­ные ответы. В наше время проектировщик принимает такие решения, используя теорию, обобщенную настолько, что её можно применить к стенам, сделанным из любых материалов, в любой среде: на Луне, под водой и где угодно ещё. Эта теория настолько обобщена, потому что основана на достаточно глубоких объяснениях принципа поведения материалов и конструкций. Чтобы найти оптимальную толщину стены из незнакомого материала, используют ту же теорию, что и для любой другой стены, но расчеты начинают, принимая различные факты — используя различные численные значения разных параметров. Прихо­дится смотреть в справочнике такие факты, как предел прочности на растяжение и упругость материала, но в дополнительном понимании нет необходимости.

Именно поэтому современный архитектор не нуждается в более длительной или трудоемкой подготовке, даже несмотря на то, что по­нимает гораздо больше, чем древний строитель. Возможно, типичную теорию из учебной программы современного студента понять сложнее, чем любую из эмпирических зависимостей древнего строителя; но со­временных теорий гораздо меньше, а их объяснительная способность придает им такие качества, как красота, внутренняя логика и связь с другими предметами, благодаря которым эти теории проще изучать. Сейчас мы знаем, что некоторые древние эмпирические зависимости были ошибочными, другие — истинными или близкими к истине, и мы знаем причины этого. Некоторыми эмпирическими правилами мы до сих пор пользуемся, но ни на одном из них уже не основывается пони­мание того, почему конструкции не рушатся.

Я, конечно, не отрицаю, что во многих предметах, где увеличи­вается знание, включая архитектуру, появляются специализации. Од­нако это не односторонний процесс, т. к. специализации часто исчеза­ют: колеса уже не проектируют и не изготавливают колесные мастера,  {22}  плуги — мастера по плугам, а письма уже не пишут писцы. Тем не менее, достаточно очевидно, что тенденция углубления и объединения, которую я описывал, не единственная: параллельно ей происходит не­прерывное расширение. Поясню: новые идеи часто не просто вытесня­ют, упрощают или объединяют существующие. Они также расширяют человеческое понимание до областей, которые раньше не были поняты совсем или о существовании которых даже не догадывались. Они могут открывать новые возможности, новые проблемы, новые специализации и даже новые предметы. И когда это происходит, мы можем получить. по крайней мере на время, больше информации для изучения, чтобы понять все это.

Возможно, медицина — наиболее распространенный пример рас­тущей специализации, которая кажется неизбежным следствием роста знания, когда открывают новые способы лечения многих болезней. Но даже в медицине присутствует противоположная тенденция объедине­ния, которая непрерывно усиливается. Общеизвестно, что многие функ­ции тела, как, впрочем, и механизмы многих болезней, ещё мало изуче­ны. Следовательно, некоторые области медицинского знания всё ещё состоят, главным образом, из собрания записанных фактов, навыков и интуиции врачей, имеющих опыт в лечении определенных болезней и передающих эти навыки и интуицию из поколения в поколение. Други­ми словами, бóльшая часть медицины всё ещё не вышла из эпохи эмпи­рических правил, и вновь обнаруженные эмпирические правила стиму­лируют появление специализаций. Но когда в результате медицинских и биохимических исследований появляются более глубокие объяснения процессов болезни (и здоровых процессов) в теле, увеличивается и по­нимание. Когда в различных частях тела, в основе разных болезней обнаруживают общие молекулярные механизмы, на смену узким тео­риям приходят более обобщенные. Как только болезнь понимают на­столько, что могут вписать её в общую структуру, роль специалиста уменьшается. Вместо этого врачи, столкнувшись с незнакомой болез­нью или редким осложнением, могут положиться на объяснительные теории. Они могут посмотреть эти факты в справочнике. Но затем они смогут применить обобщенную теорию, чтобы разработать необходи­мое лечение и ожидать, что оно будет эффективным, даже если никогда раньше оно не применялось.

Таким образом, вопрос о том, сложнее или проще становится по­нять все, что понято, зависит от равновесия двух противоположных  {23}  ре­зультатов роста знания: расширения и углубления наших теорий. Из-за расширения наших теорий понять их сложнее, из-за углубления — про­ще. Одно из положений этой книги состоит в том, что углубление мед­ленно, но уверенно побеждает. Другими словами, утверждение, в ко­торое я отказывался поверить, будучи ребенком, в самом деле ложно, а истинно практически противоположное. Мы не удаляемся от состоя­ния, когда один человек способен понять все, что понято, мы прибли­жаемся к нему.

Я не утверждаю, что скоро мы поймем все. Это совсем другой во­прос. Я не верю, что сейчас мы близки или когда-то приблизимся к по­ниманию всего, что существует. Я говорю о возможности понимания всего, что понято. Это скорее зависит не от содержания нашего знания, а от его структуры. Но структура нашего знания — независимо от воз­можности его выражения в теориях, составляющих понятное целое — безусловно зависит от самой структуры реальности. Если свободный рост знания должен продолжаться и если мы, несмотря ни на что при­ближаемся к тому состоянию, когда один человек сможет понять все, что понято, значит, глубина наших теорий должна увеличиваться до­статочно быстро, чтобы обеспечить эту возможность. Это может про­изойти, если только сама структура реальности настолько едина, что по мере роста нашего знания мы сможем понимать её все больше и больше. Если это произойдет, то в конечном итоге наши теории станут настолько общими, глубокими и составляющими друг с другом единое целое, что превратятся в единственную теорию единой структуры ре­альности. Эта теория не объяснит все аспекты реальности: это недости­жимо. Но она охватит все известные объяснения и будет применима ко всей структуре реальности настолько, насколько последняя будет по­нята. В то время как все предыдущие теории относились к конкретным предметам, это будет теория всех предметов: Теория Всего.

Эта теория, безусловно, не будет последней в своем роде, она будет первой. В науке считается доказанным, что даже наши лучшие теории обречены быть в некотором роде несовершенными и проблематичными, и мы ожидаем, что в свое время их вытеснят более глубокие и точные теории. И этот прогресс не остановится, когда мы откроем универ­сальную теорию. Например, Ньютон дал нам первую универсальную теорию тяготения и объединил, помимо всего прочего, небесную и зем­ную механику. Но его теории вытеснила общая теория относительнос­ти Эйнштейна, которая включает ещё и геометрию (которую раньше  {24}  считали отраслью математики) в физике, и поэтому наряду с большей точностью дает более глубокие объяснения. Первая универсальная тео­рия — которую я буду называть Теорией Всего — подобно всем нашим теориям, которые были до неё и будут после неё, не будет ни абсолютно истинной, ни бесконечно глубокой, а потому, в конечном итоге, её за­менит другая теория. Но эта замена произойдет не через объединение с теориями других предметов, ибо она сама будет теорией всех пред­метов. В прошлом значительный прогресс в понимании иногда имел место при значительных объединениях. Иногда прогресс был вызван структурными изменениями в понимании конкретного предмета, как, например, когда мы перестали считать Землю центром Вселенной. Пос­ле первой Теории Всего уже не будет значительных объединений. Все последующие великие открытия будут переменами в понимании мира в целом: изменениями в нашем мировоззрении. Создание Теории Всего будет последним большим объединением и в то же время первым шагом к возникновению нового мировоззрения. Я считаю, что именно такое объединение и изменение происходят сейчас. Подобное мировоззрение и является темой этой книги.

Считаю своей обязанностью сразу подчеркнуть, что я говорю не просто о «теории всего», которую в ближайшее время надеются открыть специалисты в области физики элементарных частиц. Их «теория всего» стала бы объединенной теорией всех основных сил, известных физи­ке, а именно: гравитационных, электромагнитных и ядерных сил. Она также описала бы все типы существующих дробноатомных частиц, их массы, спины, электрические заряды и другие свойства, а также прин­цип их взаимодействия. При наличии достаточно точного описания на­чального состояния любой изолированной физической системы, такая теория сможет предсказать будущее поведение системы в принципе. В случае, когда точное поведение системы предсказать невозможно, теория опишет все возможные варианты поведения системы и предска­жет вероятность их возникновения. На практике нередки случаи, ког­да начальные состояния интересующих нас систем невозможно опре­делить точно, да и предсказать их слишком сложно во всех случаях, кроме простейших. Тем не менее, такая объединенная теория частиц и сил вместе с определением начального состояния Вселенной к моменту Большого Взрыва (сильный взрыв, от которого произошла Вселенная), в принципе, содержала бы всю информацию, необходимую для предска­зания всего, что можно предсказать (рисунок 1.1).  {25} 

Рис. 1.1. Неадекватное понимание «теории всего»

Но предсказание — ещё не объяснение. «Теория всего», на кото­рую так надеются, даже совместно с теорией начального состояния, в лучшем случае представит лишь крошечную грань истинной Тео­рии Всего. Эта теория сможет предсказать все (в принципе). Но нельзя ожидать, что она объяснит гораздо больше, чем существующие теории, за исключением нескольких явлений, вызванных особенностями внут­риатомных взаимодействий, как-то: столкновения внутри ускорителей частиц и необычная история трансмутаций частиц во время Большо­го Взрыва. Что побуждает ученых использовать термин «теория всего» для названия столь малого, хотя и захватывающего отрезка знания? Я полагаю, ещё один ошибочный взгляд на природу науки, который не одобряют многие научные критики, но (увы!) одобряют многие уче­ные: наука по существу является редукционной. Это все равно, что ска­зать, что наука сомнительно упрощает все объяснения, раскладывая их на составляющие. Например, сопротивление стены проникновению или сбиванию объясняется тем, что стена — это огромное скопление взаи­модействующих молекул. Свойства этих молекул объясняют на основе составляющих их атомов, взаимодействия этих атомов друг с другом и так далее до мельчайших частиц и самых основных сил. Редукционисты считают, что все научные объяснения и, возможно, любые достаточно глубокие объяснения принимают именно такую форму.

Концепция редукционистов естественно приводит к созданию ие­рархии предметов и теорий в соответствии с тем, насколько они близ­ки к «самому низкому уровню» известных предсказательных теорий. В этой иерархии логика и математика образуют непоколебимые прин­ципы, на которых строится система научных взглядов. Фундаментом станет упрощенная «теория всего», универсальная теория частиц, сил,  {26}  пространства и времени вместе с некоторой теорией начального состо­яния Вселенной. Остальная физика образует первые несколько этажей. Астрофизика и химия займут более высокий уровень, геология — ещё более высокий и т. д. Здание разделяется на множество башен — пред­метов ещё более высокого уровня: биохимию, биологию и генетику. В нетвердых слоях стратосферы примостились такие предметы, как теория эволюции, экономика, психология и вычислительная техника, которые на этой картине почти немыслимо вторичны.

В настоящее время у нас есть только приближения к упрощенной «теории всего». Они уже достаточно точно могут предсказывать зако­ны движения отдельных дробноатомных частиц. Используя эти законы, современные компьютеры могут рассчитать движение любой изолиро­ванной группы из нескольких взаимодействующих частиц некоторого элемента, если известно их начальное состояние. Но даже мельчайшая частичка материи, видимая невооруженным глазом, содержит трилли­оны атомов, каждый из которых состоит из множества дробноатомных частиц и непрерывно взаимодействует с внешним миром, так что пред­сказать поведение этой частички не представляется возможным. Допол­няя точные законы движения различными приближениями, мы можем предсказать некоторые аспекты общего поведения достаточно крупных объектов, например, температуру плавления или кипения данного хи­мического соединения. Большая часть основной химии была таким об­разом сведена к физике. Для наук более высокого уровня программа редукционистов — всего лишь дело принципа. Никто на самом деле не собирается выводить принципы биологии, психологии или политики из принципов физики. Причина, по которой предметы более высокого уровня вообще поддаются изучению, состоит в том, что в определен­ных условиях непостижимо сложное поведение огромного количества частиц становится мерой простоты и удобопонятности. Это называет­ся исходом: простота высокого уровня «исходит» из сложности низкого уровня. Явления высокого уровня с понятными фактами, которые нель­зя просто вывести из теорий низкого уровня, называются исходящими явлениями. Например, стена могла быть крепкой, потому что те, кто её строил, боялись, что их враги могут попытаться преодолеть эту сте­ну. Это объяснение прочности стены высокого уровня невыводимо из объяснения низкого уровня, которое я привел выше (хотя и сопостави­мо с ним). «Строители», «враги», «страх», «пытаться» — это исходящие явления. Цель наук высокого уровня — дать нам возможность понять  {27}  исходящие явления, самыми важными из которых, как мы увидим, яв­ляются жизнь, мысль и вычисление.

Кстати, противоположность редукционизма — холизм, идея о том, что единственно правильные объяснения составлены на основе систем высокого уровня, — ещё более ошибочна, чем редукционизм. Чего ожи­дают от нас холисты? Того, что мы прекратим наши поиски молеку­лярного происхождения болезней? Что мы откажемся от того, что люди состоят из дробноатомных частиц? Там, где существуют упрощенные объяснения, они столь же желанны, как любые другие. Там, где целые науки упрощаются до наук низкого уровня, мы, ученые, обязаны найти эти упрощения, так же как обязаны открывать любое знание.

Редукционист считает, что наука заключается в том, чтобы раз­ложить все на составляющие. Инструменталист считает, что цель нау­ки — предсказывать события. Для каждого из них существование наук высокого уровня — вопрос удобства. Сложность мешает нам исполь­зовать элементарную физику для получения предсказаний высокого уровня, поэтому мы гадаем, каковы были бы эти предсказания, если бы мы могли их получить, — исход дает нам возможность преуспеть в этом — именно в этом предположительно заключается смысл наук высокого уровня. Таким образом, для редукционистов и инструмента­листов, которые проигнорировали как истинную структуру, так и ис­тинную цель научного знания, основой предсказывающей иерархии фи­зики является, по определению, «теория всего». Но для всех остальных научное знание состоит из объяснений, а структура научного объясне­ния не отражает иерархию редукционистов. Объяснения существуют на каждом уровне иерархии. Многие из них независимы и относят­ся только к понятиям конкретного уровня (например, «медведь съел мед, потому что был голоден»). Многие объяснения содержат логичес­кие выводы, противоположные направлению упрощенных объяснений. То есть они объясняют вещи, не разделяя их на более маленькие, прос­тейшие, а рассматривают их как составляющие более крупных и слож­ных вещей, о которых у нас, тем не менее, есть объяснительные те­ории. Например, рассмотрим конкретный атом меди на кончике носа статуи сэра Уинстона Черчилля, которая находится на Парламентской Площади в Лондоне. Я попытаюсь объяснить, почему этот атом меди находится там. Это произошло потому, что Черчилль был премьер-ми­нистром в палате общин, которая расположена неподалеку; и потому, что его идеи и руководство способствовали победе Объединенных сил  {28}  во Второй Мировой войне; и потому, что принято чествовать таких людей, ставя им памятники; и потому, что бронза, традиционный ма­териал для таких памятников, содержит медь и т. д. Таким образом, мы объясним физическое наблюдение низкого уровня — присутствие атома меди в определенном месте — через теории чрезвычайно высоко­го уровня о таких исходящих явлениях, как идеи, руководство, война и традиция.

Нет такой причины, почему должно существовать, даже в прин­ципе, какое-либо более низкоуровневое объяснение присутствия этого атома меди, чем то, которое я только что привел. Предположим, что упрощенная «теория всего» в принципе сделала бы низкоуровневое пред­сказание вероятности, что такая статуя будет существовать, если из­вестно состояние (скажем) солнечной системы в какое-то более раннее время. Точно так же эта теория в принципе описала бы, как эта статуя могла туда попасть. Но такие описания и предсказания (конечно же, абсолютно нереальные) ничего бы не объясняли. Они просто описыва­ли бы траекторию движения каждого атома меди от медного рудника через плавильную печь, мастерскую скульптора и т. д. Они также мог­ли бы сформулировать, какое влияние на эти траектории оказывают силы от окружающих атомов, например, тех, из которых состоят тела шахтеров и скульптора, и, таким образом, предсказать существование и форму статуи. В действительности, такое предсказание следовало бы отнести к атомам по всей планете, вовлеченным, кроме всего проче­го, в сложное движение, которое мы называем Второй Мировой вой­ной. Но даже если бы вы обладали сверхчеловеческой способностью следовать таким многословным предсказаниям нахождения атома ме­ди в том месте, вы все равно не смогли бы сказать: «Да, я понимаю, почему он там находится». Вы просто знали бы, что его попадание туда таким образом неизбежно (или вероятно, или что угодно ещё), если из­вестны начальные конфигурации атомов и законы физики. Если бы вы захотели понять, почему он там находится, у вас по-прежнему не было бы другого выбора, кроме как сделать следующий шаг. Вам пришлось бы выяснить все, что касается этой конфигурации атомов и их траек­торий, из-за которых атом меди оказался именно в этом месте. Такое исследование стало бы творческой задачей, какой всегда является от­крытие новых объяснений. Вам пришлось бы обнаружить, что опреде­ленные конфигурации атомов подтверждают такие исходящие явления, как руководство и война, связанные друг с другом объяснительными  {29}  теориями высокого уровня. И только узнав все эти теории, вы смогли бы полностью понять, почему этот атом меди находится именно там.

Редукционисты уверены, что законы, управляющие взаимодейст­вием дробноатомных частиц, имеют первостепенную важность, по­скольку они являются основой иерархии всего знания. Но в реальной структуре научного знания и в структуре нашего знания в целом такие законы играют гораздо более скромную роль.

Какова же эта роль? Мне кажется, что ни одна из рассмотренных теорий, претендующих на звание «теории всего», не содержит много но­вого в способе объяснения. Возможно, самый передовой подход с объ­яснительной точки зрения — это теория суперструн, в которой эле­ментарными строительными блоками материи являются удлиненные объекты, «струны», а не точечные частицы. Но ни один существующий подход не предлагает нового способа объяснения — нового в смысле объяснения Эйнштейном сил притяжения на основе искривленного про­странства и времени. В действительности, ожидается, что «теория все­го» унаследует практически всю объяснительную структуру сущест­вующих теорий электромагнетизма, ядерных сил и гравитации: их фи­зические концепции, их язык, их математический формализм и форму их объяснений. Значит, мы можем рассчитывать, что эта структура основной физики, которая нам уже известна из существующих теорий, внесет вклад в наше общее понимание.

В физике существует две теории, значительно более глубокие, чем остальные. Первая — это общая теория относительности, по-моему, наша лучшая теория пространства, времени и гравитации. Вторая — ещё более глубокая — квантовая теория. Эти две теории (а никакая другая существующая или ныне рассматриваемая теория дробноатом­ных частиц) предоставляют подробную объяснительную и формаль­ную систему взглядов, в которой выражаются все остальные теории современной физики, и содержат основные физические принципы, ко­торым подчиняются все остальные теории. Объединение общей теории относительности и квантовой теории — с целью получения квантовой теории относительности — стало в последние десятилетия основным предметом поисков физиков-теоретиков и должно было бы стать час­тью любой теории всего, как в узком, так и в широком смысле этого термина. Как мы увидим в следующей главе, квантовая теория, как и относительность, предоставляет революционно новый способ объяс­нения физической реальности. Причина, по которой квантовая теория  {30}  глубже теории относительности, лежит большей частью не в физике, а вне её, поскольку её отрасли простираются далеко за пределы физики и даже за пределы самой науки в привычном её понимании. Квантовая теория является одной из четырех основных нитей[1], образующих наше настоящее понимание структуры реальности[2].

Прежде чем назвать три других нити, я должен упомянуть ещё один способ искаженного представления структуры научного знания редукционизмом. Редукционизм принимает не только то, что объясне­ние всегда состоит из разделения системы на более маленькие и прос­тые системы, но и то, что все поздние события объясняются на основе ранних; другими словами, единственный способ что-то объяснить — сформулировать причины этого. А это подразумевает, что, чем рань­ше произошли события, на основе которых мы что-то объясняем, тем лучше объяснение, так что, в конечном счете, все лучше объяснять на основе первоначального состояния Вселенной.

«Теория всего», исключающая определение первоначального состо­яния Вселенной, не является полным описанием физической реальнос­ти, потому что она содержит только законы движения; а законы дви­жения сами по себе делают лишь условные предсказания. То есть они формулируют не то, что происходит, а только то, что произойдет в ка­кое-то время, если известно, что это происходило раньше. Только если известно полное определение начального состояния, в принципе мож­но вывести полное описание физической реальности. Существующие космологические теории не обеспечивают полного определения началь­ного состояния даже в принципе, но они утверждают, что изначально Вселенная была очень маленькой, очень горячей и имела однородную структуру. Но мы также знаем, что Вселенная не могла иметь абсо­лютно однородную структуру, потому что в соответствии с теорией это будет несовместимо с россыпью галактик, которые мы наблюда­ем сегодня в небе. На первоначальные изменения плотности, «неодно­родность распределения материи», значительное влияние оказало гра­витационное сжатие (то есть относительно плотные участки притянули  {31}  бы больше материи и стали бы более плотными), так что сначала эти изменения, должно быть, были совсем небольшими. Но какими бы маленькими они ни были, они имеют огромное значение для любых описаний реальности редукционистами, потому что почти все, что мы наблюдаем вокруг от россыпи звезд и галактик в небе до появления бронзовых статуй на планете Земля, с точки зрения основной физики является следствием этих изменений. Если наше редукционное описа­ние стремится охватить нечто большее, чем самые крупные свойства наблюдаемой Вселенной, нам нужна теория, определяющая те важней­шие первоначальные отклонения от однородности.

Рис. 1.2. Некоторые возможные траектории движения пушечного ядра. Каж­дая траектория совместима с законами движения, но только одна из траек­торий относится к конкретному случаю

Я попытаюсь заново сформулировать последнее требование, не принимая во внимание предубеждения редукционистов. Законы дви­жения любой физической системы дают только условные предсказа­ния и, следовательно, совместимы со многими возможными варианта­ми развития этой системы. (Это не зависит от ограничений предсказа­ния, которые накладывает квантовая теория и о которых я расскажу в следующей главе). Например, законы движения, которым подчиняет­ся ядро, выпущенное из пушки, совместимы с многими возможными траекториями, каждая из которых соответствует одному из возможных направлений и подъемов ствола пушки при выстреле (рис. 1.2).

Математически законы движения можно выразить системой урав­нений, которые называют уравнениями движения. Существует много различных решений этих уравнений, каждое из которых описывает какую-то возможную траекторию. Чтобы определить, какое решение описывает действительную траекторию, необходимо обеспечить допол­нительные данные — некоторую информацию о том, что происходит  {32}  в действительности. Один из способов осуществить это заключает­ся в определении начального состояния, в данном случае направления ствола пушки. Однако существуют и другие способы. Например, мы точно так же могли бы определить конечное состояние — положение и направление движения пушечного ядра в момент его приземления. Или мы могли бы определить положение самой высокой точки траектории. Мы можем давать любые дополнительные данные, если они помога­ют выбрать одно конкретное решение системы уравнений движения. Объединение любых дополнительных данных такого рода с законами движения равноценно теории, которая описывает все, что происходит с пушечным ядром с момента выстрела до удара.

Точно так же законы движения для физической реальности в целом будут иметь много решений, каждое из которых соответствует кон­кретному случаю. Для завершения описания нам придется определить, какой случай произошел в действительности, предоставляя достаточ­но дополнительных данных для получения одного из многих решений уравнений движения. В простых космологических моделях, по край­ней мере одним из способов получения таких данных является опре­деление начального состояния Вселенной. Но, кроме того, мы могли бы определить конечное состояние или состояние в любой другой мо­мент времени: или мы могли бы предоставить некоторую информацию о начальном состоянии, какую-то информацию о конечном состоянии и о промежуточных состояниях. В общем, объединив достаточное ко­личество дополнительных данных разного рода с законами движения, мы, в принципе, получили бы описание физической реальности.

Как только мы определим, скажем, конечное состояние пушечно­го ядра, мы сможем непосредственно вычислить его начальное состо­яние, и наоборот, поэтому между различными методами определения дополнительных данных не существует практической разницы. Однако бóльшую часть таких вычислений для Вселенной трудно обработать. Я сказал, что мы делаем вывод о существовании «неоднородности рас­пределения материи» в начальных состояниях из сегодняшних наблю­дений этой «неоднородности». Но это исключение: большая часть на­шего знания о дополнительных данных — о том, что конкретно проис­ходит, — существует в форме теорий высокого уровня об исходящих явлениях и, следовательно, по определению практически не поддает­ся выражению в виде формулировок начального состояния. Например, в большей части решений уравнений движения Вселенная в своем  {33}  на­чальном состоянии не обладает свойствами, необходимыми для появле­ния жизни. Следовательно, наше знание того, что жизнь появилась, — значительная часть дополнительных данных. Возможно, мы никогда не узнаем, что это ограничение значит для подробной структуры Боль­шого Взрыва, но мы можем сделать выводы непосредственно из него. Например, первая точная оценка возраста Земли была сделана на ос­нове биологической теории эволюции, которая противоречила самым выдающимся достижениям физики того времени. Только предубежде­ние редукционистов могло заставить нас считать, что эти доказатель­ства были по какой-то причине менее вескими или, в общем, теории о начальном состоянии были более «фундаментальны», чем теории об исходящих особенностях реальности.

Даже в области основной физики идея о том, что теории началь­ного состояния содержат наши самые глубокие знания, весьма ошибоч­на. Одна из причин этого состоит в том, что она логически исключает возможность объяснения самого начального состояния: почему было начальное состояние, каким оно было, — однако в действительности у нас есть объяснения многих аспектов начального состояния. В об­щем, ни одна теория времени не способна давать объяснения на основе чего-то «более раннего»; тем не менее, благодаря общей теории относи­тельности, а также квантовой теории (см. главу 2) у нас есть глубокие объяснения природы времени.

Таким образом, характер многих наших описаний, предсказаний и объяснений реальности не имеет ничего общего с теорией «начального состояния в совокупности с законами движения», к которой приводит редукционизм. Не существует причины рассматривать теории высоко­го уровня как «второсортные». Наши теории дробноатомной физики и даже квантовая теория относительности не имеют никаких преиму­ществ перед теориями об исходящих свойствах. Ни одну из этих облас­тей знания нельзя отнести к другим. Каждая теория содержит логичес­кие выводы остальных, однако не все эти выводы можно сформулиро­вать, поскольку они являются исходящими свойствами области других теорий. В действительности, неправильно употреблять сами термины «высокий уровень» и «низкий уровень». Законы биологии, например, — исходящие следствия высокого уровня законов физики. Но логически некоторые законы физики являются «исходящими» следствиями зако­нов биологии. Могло быть и так, что законы, которым подчиняются биологические и другие исходящие явления, полностью определяли бы  {34}  законы основной физики. В любом случае, когда две теории логически связаны между собой, логика не заставляет рассматривать одну из них как определяющую вторую в целом или частично. Это зависит от объ­яснительных отношений между теориями. Преимущества имеют не те­ории, которые определяют конкретную шкалу размеров или сложности, и не теории, которые расположены на определенном уровне предсказательной иерархии, а те, которые содержат самые глубокие объяснения. Структура реальности состоит не только из составляющих редукционизма, как-то: пространство, время и дробноатомные частицы, — но и из жизни, мыслей, вычислений и многого другого, к чему относятся эти объяснения. Теория становится в большей степени основной, не­жели производной, не из-за своей близости к предсказывающей основе физики, а из-за своей близости к нашим самым глубоким объяснитель­ным теориям.

Квантовая теория, как я уже говорил, является одной из таких те­орий. Три другие основные нити объяснения, через которые мы стре­мимся понять структуру реальности, относятся к «высокому уровню» с точки зрения квантовой теории. Это теория эволюции (первоначально эволюции живых организмов), эпистемология (теория познания) и те­ория вычисления (о вычислительных машинах и о том, что они могут вычислить, а что не могут). Как вы увидите, между основными прин­ципами этих четырех, на первый взгляд, независимых предметов были обнаружены такие глубокие и разнообразные связи, что наилучшим образом понять один из них, не понимая три оставшиеся, стало невоз­можно. Все четыре формируют связную объяснительную структуру, которая имеет настолько обширные перспективы, и охватывает зна­чительную часть нашего понимания мира, что, на мой взгляд, её уже можно справедливо назвать первой настоящей Теорией Всего. Таким образом, мы подошли к знаменательному моменту в истории идей — моменту, когда масштаб нашего понимания становится действительно универсальным. До настоящего времени все наше понимание касалось некоторого аспекта реальности, нехарактерного для целого. В будущем оно охватит объединенное понятие реальности: все объяснения будут пониматься на фоне универсальности, а каждая новая идея будет ав­томатически стремиться освещать не только конкретный предмет, но в различной степени все предметы. Понимание, которое мы в конечном итоге получим из последнего огромного объединения, может значитель­но превзойти понимание, которое мы получали от предыдущих  {35}  объяс­нений. Мы увидим, что здесь объединяется и объясняется не только физика и не только наука, но и отдаленные области философии, логи­ки и математики, этики, политики и эстетики: возможно, все, что мы понимаем в настоящее время, а может быть, и многое из того, что мы ещё не понимаем.

Какой же тогда вывод я адресовал бы себе-ребенку, который отвер­гал то, что рост знания делает мир менее понятным? Я бы согласился с ним, хотя сейчас я считаю, что важно не то, может ли одна из особей нашего конкретного вида понять все то, что понимает весь вид. Важно то, действительно ли едина и понятна сама структура реальности. Су­ществует множество причин считать, что это так. Будучи ребенком, я просто знал это: сейчас я могу это объяснить.

ТЕРМИНОЛОГИЯ

Эпистемология — наука о природе познания и процессах, кото­рые её создают.

Объяснение — (грубо) утверждение о природе и причинах вещей.

Инструментализм — система взглядов, в соответствии с кото­рой целью научной теории является предсказание результатов экспе­риментов.

Позитивизм — крайняя форма инструментализма, утверждаю­щая, что все формулировки, отличные от тех, которые что-либо описы­вают или предсказывают, не имеют смысла. (Этот взгляд сам не имеет смысла по своим же критериям).

Редукционный — редукционное объяснение — это объяснение, которое раскладывает все вещи на составляющие низкого уровня.

Редукционизм — система взглядов, в соответствии с которой научные объяснения изначально являются редукционными.

Холизм — идея о том, что обоснованными являются только объ­яснения, сделанные на основе систем высокого уровня; противополож­ность редукционизма.

Исход — исходящим явлением называется такое явление (как жизнь, мысль или вычисление), относительно которого существуют по­нятные факты или объяснения, которые не просто выводятся из теорий низкого уровня, но которые могут объяснить или предсказать теории высокого уровня, относящиеся непосредственно к этим явлениям.  {36} 

РЕЗЮМЕ

Научное знание, как и все человеческое знание, состоит главным образом из объяснений. Простые факты можно посмотреть в справоч­нике, предсказания важны только при проведении решающих экспери­ментов для выбора более точной научной теории, которая уже прошла проверку на наличие хороших объяснений. По мере того, как новые те­ории вытесняют старые, наше знание становится как шире (когда по­являются новые предметы), так и глубже (когда наши основные теории объясняют больше и становятся более обобщенными). Глубина побеж­дает. Таким образом, мы не удаляемся от того состояния, когда один человек сможет понять все, что понято, а приближаемся к нему. Наши самые глубокие теории настолько переплетаются друг с другом, что их можно понять только совместно, как единую теорию объединенной структуры реальности. Эта Теория Всего имеет гораздо больший мас­штаб, чем та «теория всего», которую ищут ученые, занимающиеся фи­зикой элементарных частиц, потому что структура реальности состоит не только из таких составляющих редукционизма, как пространство, время и дробноатомные частицы, но также, например, из жизни, мыс­ли и вычисления. Четыре основных нити объяснения, которые могут составить первую Теорию Всего — это

квантовая физика, Главы 2, 9, 11, 12, 13, 14;

эпистемология, Главы З, 4, 7, 10, 13, 14;

теория вычислений, Главы 5, б, 9, 10, 13, 14;

теория эволюции, Главы 8, 13, 14.


Следующая глава посвящена первой и самой важной из четырех нитей — квантовой физике.  {37} 




ГЛАВА 2

Тени

Не существует лучшей, более открытой двери к изучению физики, чем обсуждение физического феномена свечи.

Майкл Фарадей

(Курс из шести лекций по химической истории свечи)


В своих знаменитых научных лекциях в Королевском институте Майкл Фарадей всегда побуждал своих слушателей изучать мир, рас­сматривая, что происходит при горении свечи. Я заменю свечу элек­трическим фонариком. Это правомерно, поскольку устройство электри­ческого фонарика во многом основано на открытиях Фарадея.

Я опишу несколько экспериментов, которые иллюстрируют явле­ния лежащие в основе квантовой физики. Такого рода эксперименты со множеством изменений и уточнений в течение многих лет остава­лись средством к существованию квантовой оптики. В их результатах нет противоречий, однако даже сейчас в некоторые из них трудно по­верить. Основные эксперименты удивительно просты. Они в сущнос­ти не требуют ни специальных научных инструментов, ни глубокого знания математики или физики, они заключаются всего лишь в отбра­сывании теней. Обычный электрический фонарик может производить весьма странные картины света и тени. При более внимательном рас­смотрении можно увидеть, что они имеют необычные разветвления. Чтобы объяснить их, нужны не просто новые физические законы, а но­вый уровень описания и объяснения, выходящий за пределы того, что раньше считали научной сферой. Прежде всего, эти картины откры­вают существование параллельных миров. Как это возможно? Какая мыслимая картина теней может повлечь за собой подобные выводы?

Рис. 2.1. Свет от электрического фонарика

Представьте включенный электрический фонарик в темной комна­те где нет других источников освещения. Нить накала лампочки ис­пускает свет, который расширяется, образуя часть конуса. Чтобы не  {38}  усложнять эксперимент отраженным светом, стены комнаты должны быть матово-черными для полного поглощения света. Или, поскольку мы проводим эти эксперименты только в своем воображении, можно представить комнату астрономических размеров, чтобы до завершения эксперимента свет не успел достигнуть стен и вернуться. Рисунок 2.1 иллюстрирует данный опыт. Но этот рисунок в некоторой степени не соответствует истине: если бы мы смотрели на фонарик со стороны, мы не смогли бы увидеть ни фонарик, ни свет. Невидимость — одно из простейших свойств света. Мы видим свет лишь тогда, когда он попа­дает в наши глаза (хотя, как правило, мы говорим о последнем объекте, на который воздействовал этот свет и который оказался по линии на­шего зрения). Мы не можем увидеть свет, который просто проходит мимо. Если бы в луче оказался отражающий объект или даже пыль или капельки воды, чтобы рассеять свет, мы смогли бы его увидеть. Но поскольку в луче ничего нет, и мы смотрим на него извне, его свет не достигает нас. Наиболее точно то, что мы должны увидеть, следовало бы представить абсолютно черной картинкой. В присутствии второго источника света, мы могли бы увидеть фонарик, но опять же не его свет. Лучи света, даже самого интенсивного света, который мы можем получить (с помощью лазеров), проходят друг через друга, как если бы ничего не было вообще.

На рисунке 2.1 видно, что около фонарика свет наиболее яркий, по мере удаления от него свет тускнеет, так как луч расширяется, чтобы осветить ещё бóльшую площадь. Наблюдателю, находящемуся  {39}  в луче и отходящему от фонарика спиной вперед, рефлектор показался бы ещё меньше, а когда был бы виден только как точка, ещё слабее. Это в самом деле было бы так? Способен ли свет действительно рас­пространяться неограниченно все более тонкими лучами? Ответ: нет. На расстоянии примерно десяти тысяч километров от фонарика его свет был бы слишком слабым, чтобы человеческий глаз мог его раз­личить, и наблюдатель ничего бы не увидел. То есть человек ничего бы не увидел; а животное с более чувствительным зрением? Глаза ля­гушки в несколько раз чувствительнее человеческих глаз: этого вполне достаточно, чтобы почувствовать ощутимую разницу при проведении эксперимента. Если бы наблюдателем была лягушка, и она удалялась бы от электрического фонарика, момент, когда она полностью потеряла бы его из вида, никогда бы не наступил. Вместо этого лягушка увидела бы, что фонарик начал мерцать. Вспышки возникали бы через неравные промежутки времени, которые увеличивались бы по мере удаления ля­гушки от фонарика. Но отдельные вспышки не стали бы менее яркими. На расстоянии ста миллионов километров от фонарика лягушка видела бы в среднем только одну вспышку света в день, но эта вспышка была бы не менее яркой, чем любая другая, наблюдаемая с любого другого расстояния.

Лягушки не могут рассказать нам, что они видят. Поэтому при проведении реальных экспериментов мы используем фотоумножители (световые детекторы, чувствительность которых превышает чувстви­тельность глаз лягушки) и уменьшаем свет, пропуская его через тем­ные фильтры, а не наблюдаем его на расстоянии ста миллионов кило­метров от источника. Однако ни принцип, ни результат от этого не меняются: не мнимая темнота, не однородная тусклость, а мерцание, причем вспышки — одинаково яркие, независимо от того, насколько темный фильтр мы используем. Это мерцание показывает, что сущест­вует предел равномерного распространения света. Пользуясь термино­логией ювелиров, можно сказать, что свет не является бесконечно «ков­ким». Подобно золоту небольшое количество света можно равномерно распределить по очень большой площади, но, в конечном итоге, если попытаться растянуть его ещё, он станет неровным. Даже если можно как-нибудь предотвратить группирование атомов золота, существует предел, за которым атомы нельзя разделить без того, чтобы золото не перестало быть золотом. Поэтому единственный способ сделать золо­той лист толщиной в один атом ещё тоньше — расположить атомы ещё  {40}  дальше друг от друга, чтобы между ними было пустое пространство. Когда эти атомы окажутся достаточно далеко друг от друга, заблужде­нием будет считать, что они образуют сплошной лист. Например, если каждый атом золота находился бы в среднем на расстоянии несколь­ких сантиметров от своего ближайшего соседа, можно было бы провес­ти рукой через «лист», не прикасаясь к золоту вообще. Точно так же существует элементарный световой шарик или «атом», фотон. Каждая вспышка, которую видит лягушка, вызвана фотоном, воздействующим на сетчатку её глаз. Луч света становится слабее не потому, что са­ми фотоны ослабевают, а потому, что они отдаляются друг от друга, и пустое пространство между ними увеличивается (рисунок 2.2). Очень слабый луч неправомерно называть «лучом», поскольку он прерывается. Когда лягушка ничего не видит, это происходит не потому, что свет, по­падающий в её глаза, слишком слаб, чтобы воздействовать на сетчатку, а потому, что свет просто не попадает в её глаза.

Рис. 2.2. Лягушки могут видеть отдельные фотоны

Это свойство появления света в виде шариков дискретных разме­ров называется квантованием. Отдельный шарик, фотон, называется квантом (во множественном числе кванты). Квантовая теория полу­чила свое название от этого свойства, которое она приписывает всем измеримым физическим величинам, а не только количеству света или массе золота, которые квантуются, поскольку на самом деле состоят из частиц, хотя и выглядят непрерывными. Даже для такой величины, как расстояние (например, между двумя атомами), понятие непрерывного диапазона возможных величин оказывается идеализацией. В физике не  {41}  существует измеримых непрерывных величин. В квантовой физике су­ществует множество новых явлений, и, как мы увидим, квантование — одно из простейших. Однако в некотором смысле оно остается ключом ко всем остальным явлениям, поскольку если все квантуется, каким образом может изменяться значение какой-то величины? Как объект попадает из одного места в другое, если не существует непрерывного диапазона промежуточных положений, где он может находиться по пу­ти? В Главе 9 я объясню, как, но сейчас позвольте мне отложить этот вопрос на некоторое время и вернуться в область, близкую к фонари­ку, где луч выглядит непрерывным, потому что каждую секунду он испускает около 1014 (ста триллионов) фотонов в глаз, который на него смотрит.

Рис. 2.3. Полная тень и полутень тени

Граница между светом и тенью резкая или существует некоторая серая область? Обычно существует довольно широкая серая область, и одна из причин её существования показана на рисунке 2.3. Там пока­зана темная область (называемая полной тенью), куда не доходит свет от нити накала. Там же присутствует и освещенная область, которая может получать свет от любого участка нити накала. И поскольку нить накала является не геометрической точкой, а имеет определенный раз­мер, между освещенной и неосвещенной областью также присутствует  {42}  полутень: область, которая может получать свет только от некоторых участков нити накала. Если наблюдать из области полутени, то мож­но увидеть только часть нити накала, и освещение будет меньше, чем в полностью освещенной области.

Однако размер нити накала — не единственная причина того, поче­му фонарик отбрасывает полутень. Различное влияние на свет оказы­вают рефлектор, расположенный позади лампочки, стеклянный колпак фонарика, различные стыки и дефекты и т. д. И поскольку сам фона­рик достаточно сложен, мы ожидаем появления сложных картин света и тени. Но побочные свойства фонариков не являются предметом таких экспериментов. За нашим вопросом о свете фонарика скрывается более фундаментальный вопрос о свете вообще: существует ли, в принципе, некий предел резкости границы (другими словами, насколько узкой может быть полутень)? Например, если фонарик сделать из абсолютно черного (неотражающего) материала и если использовать все уменьша­ющиеся нити накала, возможно ли сужать полутень беспредельно?

Глядя на рисунок 2.3 можно подумать, что это возможно: если бы нить накала не имела размера, не было бы полутени. Но на рисунке 2.3 я сделал некоторое допущение относительно света, а именно, что свет распространяется только прямолинейно. Из повседневного опыта нам известно, что это так и есть, поскольку мы не видим волн. Но точ­ные эксперименты показывают, что свет не всегда распространяется прямолинейно. При некоторых обстоятельствах свет искривляется.

Это сложно продемонстрировать с помощью фонарика, потому что сложно сделать крошечные нити накала и абсолютно черные поверх­ности. Эти практические сложности скрывают те ограничения, кото­рые основная физика накладывает на резкость теней. К счастью, ис­кривление света можно также показать по-другому. Предположим, что свет фонарика проходит через два последовательных маленьких от­верстия в светонепроницаемых экранах, как показано на рисунке 2.4, и что проходящий через эти отверстия свет падает на третий экран. Во­прос состоит в следующем: если этот эксперимент повторять, уменьшая диаметр отверстий и увеличивая расстояние между первым и вторым экранами, можно ли беспредельно сужать полную тень (область абсо­лютной темноты) до тех пор, пока она не превратится в прямую ли­нию между центрами двух отверстий? Может ли освещенная область между вторым и третьим экраном быть ограничена произвольно уз­ким конусом? Говоря языком ювелиров, сейчас мы спрашиваем что-то  {43}  вроде того, «насколько пластичен свет», в насколько тонкую нить мож­но растянуть свет? Из золота можно получить нити толщиной в одну десятитысячную миллиметра.

Рис. 2.4. Получение узкого луча света, проходящего через два последовательных отверстия

Оказывается, что свет не так пластичен, как золото! Задолго до того, как диаметр отверстий приблизится к десятитысячной доле мил­лиметра, а в действительности, уже при диаметре отверстий около одного миллиметра свет начинает оказывать заметное противодейст­вие. Вместо того чтобы проходить через отверстия прямыми линия­ми, свет сопротивляется ограничению и распространяется за каждым отверстием. И распространяясь, свет «рассеивается». Чем меньше диа­метр отверстия, тем сильнее свет рассеивается от прямолинейного пу­ти. Появляются сложные картины света и тени. Вместо освещенной и темной областей с полутенью между ними на третьем экране мы ви­дим концентрические кольца разной толщины и яркости. Кроме того, там присутствует цвет, так как белый свет состоит из фотонов разных цветов, каждый из которых распространяется и рассеивается немного по-разному. На рисунке 2.5 показана типичная картина, которую мо­жет образовать на третьем экране белый свет, пройдя через отверстия в первых двух экранах. Не забывайте, здесь всего лишь отбрасывается тень. Рисунок 2.5 — это всего лишь тень, отброшенная вторым экраном, изображенным на рисунке 2.4. Если бы свет распространялся только прямолинейно, появилась бы только крошечная белая точка (гораздо меньше, чем яркое пятно в центре рисунка 2.5), окруженная очень  {44}  узкой полутенью. Всё остальное было бы полной тенью — совершенной темнотой.

Рис. 2.5. Картина света и тени, образованная белым светом после прохождения через маленькое круглое отверстие

Как бы ни озадачивало то, что лучи света искривляются, проходя через маленькие отверстия, я не считаю, что это нарушает сами ос­новы. В любом случае, для наших настоящих целей важно, что свет действительно искривляется. Это означает, что тени вообще не долж­ны выглядеть как силуэты предметов, которые их отбрасывают. Более того, дело даже не в размывании изображения, вызванном полутенью. Оказывается, что перегородка с отверстиями сложной формы может отбрасывать тень совершенно другой формы.  {45} 

Рис. 2.6. Тень, отбрасываемая перегородкой с двумя прямыми параллельными щелями

Рисунок 2.6 показывает приблизительно в натуральную величину часть картины тени, отбрасываемой светонепроницаемой перегородкой с двумя прямыми параллельными щелями, находящейся на расстоянии трех метров от экрана. Щели находятся на расстоянии одной пятой мил­лиметра друг от друга и освещаются прямым красным лучом лазера расположенного по другую сторону перегородки. Почему используется свет лазера, а не электрического фонарика? Только потому, что точная форма тени также зависит и от цвета света, который её производит, бе­лый свет фонарика содержит весь спектр видимых цветов, поэтому он может отбрасывать тени с интерференционными полосами различного цвета. Значит, для получения точной формы тени во время эксперимен­та лучше использовать свет одного цвета. Можно было бы поместить цветной фильтр (например, цветное оконное стекло) перед фонариком так, чтобы проходил свет только одного цвета. Это могло бы помочь, но фильтры не стопроцентно селективны. Лучше воспользоваться светом лазера, поскольку лазер можно очень точно настроить на испускание монохроматического света.

Если бы свет распространялся прямолинейно, картина, изображен­ная на рисунке 2.6, представляла бы две ярких полосы с резкими грани­цами, расположенные на расстоянии одной пятой миллиметра друг от друга (что было бы невозможно увидеть при таком масштабе), а осталь­ная часть экрана осталась бы в тени. Но в действительности свет ис­кривляется так, что образует много ярких и темных полос без резких границ. Если увеличить расстояние между щелями так, чтобы они оста­вались в пределах лазерного луча, расстояние между полосами на экра­не увеличится на столько же. В этом отношении тень ведет себя как обычная тень, отбрасываемая крупным предметом. А какую тень мы получим, если прорежем в перегородке между двумя существующими щелями ещё две идентичные щели, так, что у нас будет четыре щели, расположенные на расстоянии одной десятой миллиметра друг от дру­га? Можно ожидать, что картина, изображенная на рисунке 2.6, оста­нется практически неизменной. Как-никак первая пара щелей отбрасы­вает тени, показанные на рисунке 2.6, и, как я уже сказал, вторая пара щелей должна произвести подобную картину тени, сдвинутую в сто­рону на одну десятую миллиметра — почти на том же самом месте. Кроме того, мы знаем, что лучи света пересекаются, не оказывая ника­кого воздействия друг на друга. Так что две пары щелей должны дать ту же самую картину тени, но в два раза ярче и чуть более размытую.  {46} 

Рис. 2.7. Тени отбрасываемые перегородкой с (а) четырьмя и (b) двумя параллельными щелями

В действительности происходит нечто отличное. Действительная тень, отбрасываемая перегородкой с четырьмя прямыми параллельны­ми щелями, показана на рисунке 2.7 (а). Для сравнения ниже я сно­ва привожу рисунок тени от перегородки с двумя щелями (рису­нок 2.7(b)). Ясно, что тень от четырех щелей представляет собой от­нюдь не комбинацию двух слегка отдаленных друг от друга теней от двух щелей, а имеет новую и более сложную картину. В этой картине есть такие участки, как точка X. которая не освещена на картине тени от четырех щелей и освещена на картине тени от двух щелей. Эти учас­тки освещались при наличии в перегородке двух щелей, но перестали освещаться, когда в перегородке прорезали ещё две щели, пропускаю­щие свет. Появление этих щелей воспрепятствовало попаданию света в точку X.

Таким образом, появление ещё двух источников света затемняет точку X, а их удаление снова освещает её. Каким образом? Можно пред­ставить два фотона, направляющиеся к точке Х и отскакивающие друг от друга как бильярдные шары. Только один из фотонов мог бы попасть в точку X, но они мешали друг другу, и потому ни один из них туда не попал. Скоро я покажу, что это объяснение не может быть истинным. Тем не менее, основной идеи избежать невозможно: через вторую па­ру щелей должно проходить что-то, препятствующее попаданию света из первой пары щелей в точку X. Но что? Это мы можем выяснить с помощью дальнейших экспериментов.

Во-первых, картина тени от перегородки с четырьмя щелями, из­ображенная на рисунке 2.7 (а), появляется только в том случае, если  {47}  все четыре щели освещены лазерным лучом. Если освещены только две щели, появляется картина, соответствующая тени от двух щелей Еcли освещены три щели, появится картина тени от трех щелей которая в свою очередь будет отличаться от двух предыдущих. Таким обра­зом, в луче света находится нечто, вызывающее интерференцию. Кар­тина тени от двух щелей также появляется, если две щели заполнить светонепроницаемым материалом, но она изменяется при заполнении этих щелей прозрачным материалом. Другими словами, интерферен­ции препятствует нечто, препятствующее свету, это может быть даже что-то столь же несущественное, как туман. Но оно может пройти через все, что пропускает свет, даже через непроницаемый (для материи) алмаз. Если в аппарате расположить сложную систему зеркал и линз так, чтобы свет мог распространяться от каждой щели до конкретной точки на экране, то в этой точке наблюдалась бы часть картины тени от четырех щелей. Если конкретной точки достигает свет только от двух щелей, на экране мы увидим часть картины тени от двух щелей и т. д.

Таким образом, что бы ни вызывало интерференцию, оно ведет се­бя как свет. Оно присутствует в луче света, но отсутствует вне него. Оно отражается, передается или блокируется тем, что отражает, пере­дает или блокирует свет. Возможно, вы удивитесь, почему я столь дос­конально разбираю этот вопрос. Абсолютно очевидно, что это свет то есть фотонам из одной щели мешают фотоны из других. Но, возможно вы поставите под сомнение очевидное после следующего эксперимента, расшифровки спектров.

Что нам ожидать при проведении этих экспериментов только с од­ним фотоном? Например, предположим, что наш фонарик расположен так далеко от экрана, что за целый день на экран попадает только один фотон. Что увидит наша лягушка, наблюдающая за экраном? Если то, что каждому фотону мешают другие фотоны, — правда, то не уменьшится ли интерференция, когда фотоны будут появляться реже? Не прекратится ли она вовсе, если через аппарат за раз будет проходить только один фотон? Мы по-прежнему можем ожидать появления полу­теней, т. к. фотон при прохождении через щель может отклониться от своего курса (например, ударившись о край щели). Но на экране мы точно не должны увидеть участок, подобный точке X, который полу­чает фотоны, когда открыты две щели, и становится темным когда открывают две другие.  {48} 

Однако именно это мы и наблюдаем. Независимо от того, насколько редко появляются фотоны, картина тени остается неизменной. Даже при проведении эксперимента с появлением одного фотона за раз этот фотон не попадает в точку X, когда открыты все четыре щели. Но стоит только закрыть две щели, и вспышки в точке Х возобновляются.

Возможно ли, чтобы фотон расщеплялся на фрагменты, которые после прохождения через щели изменяли бы свою траекторию и рекомбинировались? Эту возможность мы тоже можем исключить. Если снова выпустить из аппарата один фотон и у каждой щели установить по детектору, то зарегистрировать сигнал сможет максимум один из них. Поскольку при подобном эксперименте никогда не наблюдались сигналы на двух детекторах одновременно, можно сказать, что обнару­живаемые ими объекты не расщепляются.

Таким образом, если фотоны не расщепляются на фрагменты и отклоняются от траектории не под действием других фотонов, то что же вызывает это отклонение? Когда через аппарат проходит один фотон за раз, что может проходить через другие щели, чтобы помешать ему?

Давайте подойдем к рассмотрению этого вопроса критически. Мы обнаружили, что когда один фотон проходит через этот аппарат,

он проходит через одну щель, затем что-то воздействует на него, заставляя отклониться от своей траектории, и это воздействие зависит от того, какие ещё щели открыты;

воздействующие объекты прошли через другие щели;

воздействующие объекты ведут себя так же, как фотоны ...,

... но они не видимы.

С этого момента я буду называть воздействующие объекты «фо­тонами». Именно фотонами они и являются, хотя на данный момент представляется, что существует два вида фотонов, один из которых я временно назову реальными фотонами, а другой теневыми фотона­ми. Первые мы можем увидеть или обнаружить с помощью приборов, тогда как вторые — неосязаемы (невидимы): их можно обнаружить только косвенно через их воздействие на видимые фотоны. (Далее мы увидим, что между реальными и теневыми фотонами не существует особой разницы: каждый фотон осязаем в одной Вселенной и не осяза­ем во всех параллельных Вселенных — но я опережаю события). Пока мы пришли только к тому, что каждый реальный фотон находится под сопровождением эскорта теневых фотонов и что при прохождении фо­тона через одну из четырех щелей некоторые теневые фотоны прохо­дят  {49} через три оставшиеся. Поскольку при изменении положения щелей (при условии, что они находятся в пределах луча) на экране появляют­ся различные интерференционные картины, теневые фотоны должны попадать на всю освещенную часть экрана, куда попадает реальный фотон. Следовательно, теневых фотонов гораздо больше, чем реальных. Сколько же их? Эксперименты не могут определить верхнюю грани­цу этого числа, но устанавливают приблизительную нижнюю границу. Максимальная площадь, которую мы могли осветить с помощью лазе­ра в лаборатории, составила около квадратного метра, а минимальный достижимый размер отверстий мог быть около одной тысячной милли­метра. Таким образом, возможно получить около 1012 (одного триллио­на) положений отверстий на экране. Следовательно, каждый реальный фотон должен сопровождать, по крайней мере, триллион теневых.

Таким образом, мы узнали о существовании бурлящего, непомер­но сложного скрытого мира теневых фотонов. Они распространяются со скоростью света, отскакивают от зеркал, преломляются линзами и останавливаются, встретив светонепроницаемые барьеры или фильтры другого цвета. Однако они не оказывают никакого воздействия даже на самые чувствительные детекторы. Единственная вещь во вселен­ной, через которую можно наблюдать теневой фотон, — это воздей­ствие, которое он оказывает на реальный фотон, им сопровождаемый. В этом и заключается явление интерференции. Если бы не это явление и не странные картины теней, которые мы наблюдаем, теневые фотоны были бы абсолютно незаметными.

Интерференция свойственна не только фотонам. Квантовая теория предсказывает, а эксперимент подтверждает, что интерференция про­исходит с любой частицей. Так что каждый реальный нейтрон должны сопровождать массы теневых нейтронов, каждый электрон — массы теневых электронов и т. д. Каждую из этих теневых частиц можно об­наружить лишь косвенно через её воздействие на движение реального двойника.

Следовательно, реальность гораздо больше, чем кажется, и боль­шая её часть невидима. Те объекты и события, которые мы можем наблюдать с помощью приборов, — не более чем вершина айсберга.

Реальные частицы обладают свойством, которое дает нам право называть их совокупность Вселенной. Это определяющее свойство за­ключается просто в их реальности, то есть во взаимодействии друг с другом и, следовательно, в том, что их можно непосредственно  {50}  обнаружить с помощью приборов и чувствительных датчиков, созданных из других реальных частиц. Из-за явления интерференции они не отделя­ются от остальной реальности (то есть, от теневых частиц) полностью. В противном случае мы бы никогда не узнали, что реальность — это нечто большее, чем реальные частицы. Но в хорошем приближении они напоминают Вселенную, которую мы видим вокруг ежедневно, и Все­ленную, на которую ссылается классическая (доквантовая) физика.

По тем же причинам мы могли бы назвать совокупность теневых частиц параллельной Вселенной, ибо теневые частицы оказываются под воздействием реальных частиц только через явление интерференции. Но мы можем сделать ещё лучше. Оказывается, что теневые частицы разделяются между собой точно так же, как отделяется от них все­ленная реальных частиц. Другими словами, они образуют не одну од­нородную параллельную вселенную, гораздо бóльшую чем реальная, а огромное количество параллельных вселенных, каждая из которых по составу похожа на реальную и подчиняется тем же законам физики, но отличается от других расположением частиц.

Замечание относительно терминологии. Слово «вселенная» тради­ционно использовали для обозначения «всей физической реальности». В этом смысле может существовать не более одной вселенной. Придер­живаясь этого определения, мы могли бы сказать, что то, что мы при­выкли называть «вселенной», а именно: вся непосредственно ощутимая материя и энергия вокруг нас, все окружающее нас пространство, — далеко не вся вселенная, а лишь небольшая её часть. В этом случае нам пришлось бы придумать новое название для этой маленькой реальной части. Но большинство физиков предпочитает продолжать пользовать­ся словом «вселенная» для обозначения того, что оно всегда обозначало, несмотря на то, что сейчас эта сущность оказывается лишь маленькой частью физической реальности. Для обозначения физической реальнос­ти в целом создали неологизм — мультиверс[3].

Опыты с интерференцией одной частицы, подобные описанным мной, показывают, что мультиверс существует и содержит множество двойников каждой частицы реальной вселенной. Чтобы прийти к сле­дующему выводу о разделении мультиверса на параллельные вселен­ные, следует рассмотреть явление интерференции нескольких реальных  {51}  частиц. Самый простой способ осуществить это — спросить при «мысленном эксперименте», что должно происходить на микроскопи­ческом уровне, когда теневые фотоны встречают светонепроницаемый объект. Безусловно, они останавливаются: мы знаем это, поскольку ин­терференция прекращается, когда на пути теневых фотонов появляется светонепроницаемая перегородка. Но почему? Что их останавливает? Мы можем исключить прямой ответ, что реальные атомы перегород­ки поглощают их так же, как поглотили бы реальные фотоны. Одно нам известно: теневые фотоны не взаимодействуют с реальными ато­мами. Кроме того, мы можем проверить, измерив атомы перегородки (или точнее, заменив перегородку детектором), что они не поглощают энергию и не изменяют свое состояние до тех пор, пока не встретят реальный фотон. Теневые фотоны не оказывают на них никакого вли­яния.

Другими словами, перегородка одинаково воздействует, как на ре­альные, так и на теневые фотоны, но эти два вида фотонов воздейст­вуют на неё по-разному. В действительности, насколько нам известно, теневые фотоны вообще не оказывают на неё никакого воздействия. Это и является определяющим свойством теневых фотонов, поскольку, ес­ли бы они оказывали реальное воздействие хоть на какой-то материал, то этот материал можно было бы использовать как детектор теневых фотонов, а само явление теней и интерференции не существовало бы в том виде, в каком я его описал.

Следовательно, в месте существования реальной перегородки на­ходится и теневая. Без особых усилий можно сделать вывод, что эта теневая перегородка состоит из теневых атомов, которые, как нам уже известно, должны присутствовать как двойники реальных атомов пере­городки. У каждого реального атома существует множество двойников. В действительности, общая плотность теневых атомов даже в слабом тумане более чем достаточна, чтобы остановить танк, что уж говорить об одном фотоне, если бы эти атомы могли воздействовать на него. По­скольку мы обнаружили, что частично светопроницаемые перегородки имеют равную степень светопроницаемости как для реальных, так и для теневых фотонов, значит, не все теневые атомы на пути опреде­ленного теневого фотона могут помешать его движению. Каждый тене­вой фотон встречает перегородку, во многом подобную той, которую встречает его реальный двойник, перегородку, состоящую из крошеч­ного количества существующих теневых атомов.  {52} 

По той же причине каждый теневой атом в перегородке может вза­имодействовать лишь с небольшим количеством других теневых ато­мов, находящихся около него, и те, с которыми он взаимодействует, образуют перегородку, весьма похожую на реальную. И так далее. Вся материя и все физические процессы имеют такую структуру. Если ре­альной перегородкой является сетчатка глаза лягушки, значит, должно быть много теневых сетчаток, каждая из которых способна остановить только одного теневого двойника каждого фотона. Каждая теневая сет­чатка взаимодействует только с соответствующими теневыми фото­нами, с соответствующей теневой лягушкой и т. д. Другими словами, частицы группируются в параллельные вселенные. Они «параллельны» в том смысле, что в пределах каждой вселенной частицы взаимодейст­вуют друг с другом так же, как в реальной вселенной, но воздействие, оказываемое каждой вселенной на остальные, весьма слабое, и прояв­ляется оно через явление интерференции.

Таким образом, мы вывели цепочку умозаключений, которая начи­нается со странных картин тени и заканчивается параллельными все­ленными. На каждом этапе мы обнаруживаем, что поведение наблюдае­мых нами объектов можно объяснить только присутствием невидимых объектов и их определенными свойствами. Основная идея заключает­ся в том, что интерференция одной частицы определенно исключает возможность существования только реальной вселенной, которая нас окружает. А факт существования такого явления интерференции не­оспорим. Тем не менее, теория существования мультиверса не пользу­ется особой популярностью у физиков. Почему?

Ответ, к сожалению, окажется нелицеприятным для большинства. Я ещё вернусь к этому в главе 13, но сейчас мне хотелось бы под­черкнуть, что аргументы, представленные мной в этой главе, обраще­ны лишь к тем, кто ищет объяснений. Те, кого устраивают обычные предсказания и у кого нет особого желания понять, как получаются предсказанные результаты экспериментов, могут при желании просто отрицать существование всего, кроме того, что я называю «реальными» объектами. Некоторые люди, например, инструменталисты и позити­висты, принимают эту линию как сущность философского принципа. Я уже сказал, что я думаю о таких принципах и почему. Другие лю­ди просто не хотят думать об этом. Как-никак, это столь грандиозный вывод, и он вызывает беспокойство, когда о нем слышишь впервые. Но я полагаю, что все эти люди ошибаются. Я надеюсь убедить читате­лей,  {53}  которые терпеливо относятся ко мне, что понимание мультивер­са — это предварительное условие наилучшего возможного понимания реальности. Я говорю это не в духе суровой определенности искать ис­тину независимо от того, насколько неприятной она может оказаться (хотя надеюсь, что приму и такую позицию, если до этого дойдет). Напротив, я говорю это потому, что итоговое мировоззрение намного более цельно и обладает гораздо большим смыслом, чем все предыду­щие мировоззрения. Оно возвышается над циничным прагматизмом, который в наше время зачастую является суррогатом мировоззрения ученых.

«Почему нельзя просто сказать, — спрашивают некоторые физики-практики, — что фотоны ведут себя так, словно сталкиваются с неви­димыми объектами? Почему нельзя оставить это в таком виде? Почему мы должны идти дальше и принимать теорию о существовании неви­димых объектов?» Более экзотический вариант этой же по сути идеи заключается в следующем. «Реальный фотон осязаем, теневой фотон — это просто способ возможного, но не осуществленного поведения реаль­ного фотона. Тогда квантовая теория заключается во взаимодействии реального с возможным». Это, по меньшей мере, звучит достаточно глу­боко. Но, к сожалению, люди, которые придерживаются какого-то из этих взглядов (включая выдающихся ученых, которые должны бы быть лучше осведомлены), во всем, что касается этого вопроса, неизменно начинают нести чушь. Поэтому давайте будем рассудительными. Клю­чевой момент состоит в том, что реальный, видимый фотон ведет себя по-разному в соответствии с тем путем, который открыт где-то в аппа­рате, чтобы пропустить что-то, что, в конце концов, задержит видимый фотон. Что-то перемещается по этим путям, и отказаться называть это «реальным» все равно, что играть в слова. «Возможное» не может вза­имодействовать с реальным: несуществующие объекты не могут из­менять траекторию движения существующих. Если фотон отклоняется от своей траектории, на него должно что-то воздействовать, и это что-то я назвал «теневым фотоном». Название ещё не делает это реальным, но не может быть, чтобы действительное событие, как-то: появление и обнаружение реального фотона, — было вызвано воображаемым со­бытием, тем, что фотон «мог сделать», но не сделал. Причиной других событий может стать только то, что действительно происходит. Если сложное движение теневых фотонов в эксперименте с интерференцией было бы просто возможностью, которая на самом деле не имела места,  {54}  то наблюдаемое нами явление интерференции в действительности не произошло бы.

Причину того, что эффект интерференции обычно столь слаб, и его сложно обнаружить, можно найти в законах квантовой меха­ники, которые им управляют. Существенны два частных следствия этих законов. Первое: каждая дробноатомная частица имеет двойников в других вселенных, и только эти двойники ей мешают. Любые дру­гие частицы этих вселенных не оказывают на неё непосредственного воздействия. Следовательно, интерференцию можно наблюдать лишь в особых случаях, когда траектории частицы и её теневых двойни­ков расходятся и затем вновь сходятся (так же, как фотон и тене­вой фотон стремятся к одной и той же точке на экране). Даже вре­мя должно быть синхронизировано: если на одной из двух траекто­рий возникнет задержка, интерференция ослабнет или прекратится. Второе: для того, чтобы обнаружить интерференцию между любыми двумя вселенными, необходимо, чтобы между всеми их частицами, положение и другие свойства которых не идентичны, произошло вза­имодействие. На практике это означает, что можно обнаружить ин­терференцию только между двумя очень похожими вселенными. На­пример, во всех описанных мною экспериментах интерферирующие вселенные отличаются положением только одного фотона. Если фо­тон при движении воздействует на другие частицы, и, в частности, если мы видим его, то эти частицы или наблюдатель тоже станут различными в различных вселенных. Если это так, то последующую интерференцию, включающую этот фотон, на практике невозможно будет обнаружить, потому что требуемое взаимодействие между все­ми частицами, которые подверглись влиянию, будет слишком сложно обеспечить. Здесь я должен упомянуть, что стандартная фраза, опи­сывающая этот факт, а именно: «наблюдение разрушает интерферен­цию», — весьма обманчива по трем причинам. Во-первых, она пред­полагает некоторое психокинетическое влияние сознательного «наблю­дателя» на основные физические явления, хотя такого влияния не существует. Во-вторых, интерференция не «разрушается»: её просто (го­раздо!) сложнее увидеть, потому что для этого необходимо управлять точным поведением гораздо большего количества частиц. И, в-треть­их, не только «наблюдение», но и любое воздействие фотона на его окружение, зависящее от выбранной им траектории, делает то же са­мое.  {55} 

Ради читателей, которые могли видеть другие формы изложения квантовой физики, я должен кратко показать связь между аргумен­тами, приведенными мной в этой главе, и обычным способом пред­ставления этого предмета. Возможно, из-за споров, возникших среди физиков-теоретиков, традиционно отправной точкой была сама кванто­вая теория. Сначала теорию формулируют как можно точнее, а затем пытаются понять, что она говорит нам о реальности. Это единствен­ный возможный подход к пониманию мельчайших деталей квантовых явлений. Но в отношении вопроса о том, состоит ли реальность из од­ной вселенной или из многих, этот подход излишне сложен. Именно поэтому в данной главе я отошел от него. Я даже не сформулировал ни одного постулата квантовой теории, я просто описал некоторые физи­ческие явления и сделал неизбежные выводы. Но если начинать с тео­рии, существуют две вещи, которые никто не будет оспаривать. Первая заключается в том, что квантовая теория не имеет равных себе в спо­собности предсказывать результаты экспериментов даже при слепом использовании её уравнений без особых размышлений об их значении. Вторая состоит в том, что квантовая теория рассказывает нам нечто но­вое и необычное о природе реальности. Спор заключается лишь в том, что именно. Физик Хью Эверетт первым ясно осознал (в 1957 году, через тридцать лет после того, как эта теория стала основой физики дробноатомных частиц), что квантовая теория описывает мультиверс. С тех самых пор бушевал спор о том, допускает ли эта теория какую-то другую интерпретацию (повторную интерпретацию, или формулиров­ку, или модификацию и т. д.), по которой она описывает единственную вселенную, но продолжает правильно предсказывать результаты экспе­риментов. Другими словами, действительно ли принятие предсказаний квантовой теории вынуждает нас принять существование параллель­ных вселенных?

Мне кажется, что этот вопрос, а следовательно, и преобладающая тональность спора относительно этой проблемы имеет ошибочное на­правление. Признаться, для физиков-теоретиков, подобных мне, допус­тимо и оправданно прикладывать огромные усилия, чтобы достичь по­нимания формальной структуры квантовой теории, но не за счет то­го, чтобы потерять из вида нашу главную цель — понять реальность. Даже если предсказания квантовой теории можно было бы каким-то образом получить, не ссылаясь на другие вселенные, отдельные фото­ны все равно отбрасывали бы описанные мной тени. Даже ничего не зная  {56}  о квантовой теории, можно увидеть, что эти тени не могут быть результатом какого-то одного случая движения фотона от фонарика к глазу наблюдателя. Их нельзя совместить ни с одним объяснением только на основе тех фотонов, которые мы видим. Или только на ос­нове перегородки, которую мы видим. Или только на основе видимой нами вселенной. Следовательно, если лучшая теория, имеющаяся в рас­поряжении физиков, не ссылалась бы на параллельные вселенные, это просто значило бы, что нам нужна теория лучше, теория, которая ссы­лалась бы на параллельные вселенные, чтобы объяснить то, что мы видим.

Таким образом, принятие предсказаний квантовой теории застав­ляет нас принять существование параллельных вселенных? Не само по себе. Любую теорию мы всегда можем истолковать в соответствии с принципами инструменталистов так, что она не заставит нас при­нимать что-либо относительно реальности. Но это отступление. Как я уже сказал, чтобы узнать, что параллельные вселенные существуют, нам не нужны глубокие теории: об этом нам говорят явления интерфе­ренции одной частицы. Глубокие теории нужны нам, чтобы объяснить и предсказать такие явления — рассказать: каковы другие вселенные, каким законам они подчиняются, как влияют друг на друга и как все это укладывается в теоретические основы других предметов. Именно это и делает квантовая теория. Квантовая теория параллельных все­ленных — это не задача, это решение. Это толкование нельзя назвать ненадежным и необязательным, исходящим из скрытых теоретических соображений. Это объяснение — единственно надежное объяснение — замечательной и противоречащей интуиции реальности.

Пока я использовал временную терминологию, предполагающую, что одна из множества параллельных вселенных отличается от дру­гих тем, что она «реальна». Пришло время разорвать последнюю связь с классическим понятием реальности, основанном на существовании одной вселенной. Вернемся к нашей лягушке. Мы поняли, что история лягушки, которая смотрит на далекий от неё фонарик в течение мно­гих дней, ожидая вспышку, которая появляется в среднем раз в день, — ещё не вся история, потому что должны также существовать теневые лягушки в теневых вселенных, сосуществующие с реальной лягушкой и тоже ждущие появления фотонов. Допустим, что нашу лягушку на­учили подпрыгивать при появлении вспышки. В начале эксперимента у реальной лягушки будет множество теневых двойников, и изначаль­но  {57}  все они будут похожи. Но уже через короткий промежуток времени они не будут так похожи. Невозможно, чтобы каждая лягушка увиде­ла фотон мгновенно. Но событие, редкое в одной вселенной, является обычным в мультиверсе. В любой момент где-то в мультиверсе су­ществует несколько вселенных, в каждой из которых в определенный момент фотон воздействует на сетчатку глаза лягушки, находящейся в этой вселенной. И эта лягушка подпрыгивает.

Почему же она подпрыгивает? Потому что в пределах своей вселен­ной она подчиняется тем же законам физики, что и реальная лягушка: на её теневую сетчатку попал теневой фотон, принадлежащий этой все­ленной. Одна из светочувствительных теневых молекул этой теневой сетчатки отреагировала появлением сложных химических изменений, на что, в свою очередь, отреагировал зрительный нерв теневой лягуш­ки. В результате этого процесса в мозг теневой лягушки поступило сообщение, и у лягушки появилось ощущение, что она видит вспышку.

Или мне следует сказать «теневое ощущение того, что она видит вспышку»? Конечно, нет. Если «теневые» наблюдатели, будь то лягушки или люди, реальны, то все их ощущения тоже должны быть реальны­ми. Когда они наблюдают то, что мы можем назвать теневым объек­том, для них этот объект реален. Они наблюдают его при помощи тех же средств и в соответствии с тем же определением, что и мы, когда говорим, что вселенная, которую мы наблюдаем, «реальна». Понятие ре­альности относительно для данного наблюдателя. Поэтому объективно не существует ни двух видов фотонов, реального и теневого, ни двух видов лягушек, ни двух видов вселенных, одна из которых — реальная, а все остальные — теневые. В описании, которое я привел относительно образования теней или каких-то схожих явлений, не существует ниче­го, что разграничивает области «реальных» и «теневых» объектов, кроме простого допущения, что одна из копий «реальна». Говоря о реальных и теневых фотонах, я, очевидно, разделил их потому, что мы видим первые, но не вторые. Но кто «мы»? Пока я писал все это, множество теневых Дэвидов писали то же самое. Они тоже подразделяли фотоны на реальные и теневые; но среди фотонов, которые они называли тене­выми, есть фотоны, которые я назвал «реальными», а те фотоны, кото­рые они называли реальными, оказались среди тех, которые я назвал «теневыми».

Ни одна копия объекта не занимает привилегированного положения ни при объяснении теней, которое я только что изложил, ни во всем  {58}  математическом объяснении квантовой теории. Субъективно я могу считать, что выделяюсь среди копий, поскольку я — «реальный», по­скольку я могу непосредственно воспринимать себя, а не других, но я должен смириться с тем, что все остальные копии чувствуют то же самое.

Многие из этих Дэвидов пишут эти же самые слова в это мгновение. У некоторых это получается лучше. А некоторые пошли выпить чашку чая.

ТЕРМИНОЛОГИЯ

Фотон — световая частица.

Реальный/Теневой — в целях объяснения только в этой главе, я назвал частицы этой вселенной реальными, а частицы других вселен­ных — теневыми.

Мультиверс — вся физическая реальность. В ней находится мно­го параллельных вселенных.

Параллельные вселенные — они «параллельны» в том смысле, что в пределах каждой вселенной частицы взаимодействуют друг с дру­гом так же, как и в реальной вселенной, но каждая вселенная оказывает на остальные весьма слабое влияние через явление интерференции.

Квантовая теория — теория физики мультиверса.

Квантование — свойство иметь дискретный (а не непрерывный) набор возможных значений. Квантовая теория получила название от до­пущения, что все измеряемые величины квантуются. Однако наиболее важным эффектом является не квантование, а интерференция.

Интерференция — влияние, оказываемое частицей одной все­ленной на своего двойника из другой вселенной. Интерференция фото­на может стать причиной появления теней более сложной формы, чем просто силуэты препятствий, вызывающих их появление.

РЕЗЮМЕ

При экспериментах с интерференцией на картине тени могут при­сутствовать такие участки, которые перестают освещаться при появ­лении в перегородке новых щелей. Это остается неизменным, даже если эксперимент проводят с отдельными частицами. Цепочка рассуждений,  {59}  основанных на этом факте, исключает возможность того, что вселен­ная, окружающая нас, — это вся реальность. В действительности, вся физическая реальность, мультиверс, содержит огромное количество па­раллельных вселенных.


Квантовая физика — одна из четырех основных нитей объяснения. Следующая основная нить — это эпистемология, теория познания.  {60} 




ГЛАВА 3

Решение задач

Я даже не знаю, что более странно: поведение самих теней или тот факт, что несколько картин света и тени могут заставить нас столь радикально изменить наши представления о структуре реальности. До­казательства, которые я привел в предыдущей главе, несмотря на свои противоречивые выводы, представляют собой типичный отрезок на­учного рассуждения. Стоит поразмышлять над характером этого рас­суждения, которое само по себе является естественным явлением, по крайней мере, столь же удивительным и обширным, как и физика те­ней.

Тем, кто предпочел бы, чтобы структура реальности была более прозаичной, может показаться немного непропорциональным, даже не­честным, что такие грандиозные выводы могут последовать из того, что крошечное световое пятно окажется на экране здесь, а не там. Тем не менее, это действительно так, и это далеко не первый подобный случай в истории науки. В этом отношении открытие других вселен­ных очень напоминает открытие других планет древними астрономами. Прежде чем послать межпланетные научно-исследовательские станции на Луну и другие планеты, мы получили всю информацию о планетах из световых пятен (или другого излучения), которое наблюдали в одном месте, а не в другом. Рассмотрим, как было открыто первое определяю­щее свойство планет, которое отличает их от звезд. Если наблюдать за ночным небом в течение нескольких часов, можно увидеть, что звезды движутся вокруг определенной точки в небе. Траектория их движения остается постоянной, не изменяется и их положение относительно друг друга. Традиционное объяснение заключалось в том, что ночное небо — это огромная «небесная сфера», которая вращается вокруг неподвижной Земли, а звезды — это либо отверстия в сфере, либо вкрапленные сия­ющие кристаллы. Однако среди тысяч световых точек, которые можно увидеть в небе невооруженным глазом, есть несколько самых ярких, которые остаются неподвижными в течение более долгих промежут­ков времени, словно прикрепленные к небесной сфере. Их блуждающее  {61}  движение по небу более сложно. Их называют «планеты», от греческого слова «странник». Их блуждающее движение по небу стало признаком неадекватности объяснения, основанного на небесной сфере.

Последующие объяснения движения планет сыграли важную роль в истории науки. Гелиоцентрическая теория Коперника расположила планеты и Землю на круговых орбитах вокруг Солнца. Кеплер обна­ружил, что орбиты — скорее эллипсы, чем круги. Ньютон объяснил эллипсы через свой закон обратных квадратов сил тяготения, и впо­следствии его теория помогла предсказать то, что взаимное гравита­ционное притяжение планет вызывает небольшие отклонения от эл­липтических орбит. Наблюдение этих отклонений привело в 1846 году к открытию новой планеты, Нептун, — одному из многих открытий, наглядно подтвердивших теорию Ньютона. Однако несколько десяти­летий спустя общая теория относительности Эйнштейна предостави­ла нам принципиально новое объяснение тяготения на основе искрив­ленного пространства и времени и, таким образом, вновь предсказала немного другое движение планет. Например, эта теория предсказала, что каждый год планета Меркурий будет отклоняться на одну десяти­тысячную градуса от положения, которое она должна занимать в со­ответствии с теорией Ньютона. Эта теория также показала, что свет звезд, проходящий близко с Солнцем, из-за тяготения будет отклонять­ся на величину, в два раза превышающую значение, предсказанное те­орией Ньютона. Наблюдение этого отклонения Артуром Эддингтоном в 1919 году часто называют событием, из-за которого мировоззрение Ньютона утратило свою рациональную состоятельность. (Ирония со­стоит в том, что современные оценки точности эксперимента Эддингтона говорят о том, что такие выводы могли быть преждевременными). Эксперимент, который с тех пор повторяли с большой точностью, за­ключался в измерении положения пятен (изображений звезд, близких к нимбу Солнца во время солнечного затмения) на фотоснимке.

По мере того, как предсказания астрономов становились более точ­ными, уменьшалась разница между тем, что предсказывали следующие друг за другом теории относительно объектов в ночном небе. Чтобы обнаружить разницу, приходилось строить ещё более мощные телеско­пы и измерительные приборы. Однако объяснения, на которых были основаны эти предсказания, не совпадали. Напротив, как я только что показал, революционные перемены следовали одна за другой. Таким об­разом, наблюдения даже меньших физических эффектов вызывали даже  {62}  бóльшие изменения в нашем мировоззрении. Следовательно, может показаться, что мы делаем грандиозные выводы, исходя из недостаточ­ного количества доказательств. Что оправдывает такие выводы? Можно ли быть уверенным, что только из-за того, что звезда на фотошабло­не Эддингтона оказалась смещенной на доли миллиметра, пространство и время должны быть искривленными; или из-за того, что фотодетек­тор в определенном положении не регистрирует «удар» слабого света, должны существовать параллельные вселенные?

В самом деле, то, о чем я только что говорил, преуменьшает как слабость, так и косвенность всех результатов наблюдений. Дело в том, что мы не воспринимаем звезды, пятна на фотоснимках или любые другие внешние объекты и события непосредственно. Мы видим что-либо только тогда, когда изображение этого появляются на сетчатке наших глаз, но даже эти изображения мы не воспринимаем, пока они не вызовут электрические импульсы в наших нервных окончаниях и пока наш мозг не получит и не поймет эти импульсы. Таким образом, вещественное доказательство, из-за которого мы склоняемся к тому, чтобы принять одну теорию мировоззрения, а не другую, измеряет­ся даже не в миллиметрах: оно измеряется в тысячных долях милли­метра (расстояние между нервными волокнами глазного нерва) и в со­тых долях вольта (изменение электрического потенциала наших нер­вов, из-за которого мы чувствуем разницу в восприятии двух разных вещей). Однако мы не придаем равного значения всем нашим сенсор­ным ощущениям. При научных экспериментах мы заходим достаточно далеко, чтобы приблизиться к восприятию тех аспектов внешней ре­альности, которые, как нам кажется, могут нам помочь при выборе одной из конкурирующих теорий. Перед наблюдением мы решаем, где и когда нам следует наблюдать и что искать. Часто мы используем комплексные, специально спроектированные приборы, как-то: телеско­пы и фотоумножители. Но как бы ни сложны были эти приборы и как бы ни значительны были внешние причины, которым мы приписыва­ем показания этих приборов, мы воспринимаем эти показания только через свои органы чувств. Мы не можем избежать этого, что мы — люди — маленькие создания с несколькими несовершенными канала­ми, через которые мы получаем информацию о том, что нас окружает. Мы интерпретируем эту информацию как свидетельство существова­ния большой и сложной внешней вселенной (или мультиверса). Но когда мы пытаемся уравновесить это свидетельство, мы буквально не нахо­дим  {63}  ничего, кроме слабого электрического тока, проникающего в наш мозг.

Что оправдывает те выводы, которые мы делаем из этих картин? Дело определенно не в логическом выведении. Ни из этих и ни из каких-нибудь других наблюдений нельзя доказать даже то, что внешняя все­ленная или мультиверс вообще существует; что уж говорить о каком-то отношении к ней электрических токов, получаемых нашим мозгом. Все что мы воспринимаем, может быть иллюзией или сном. Как-никак ил­люзии и сны — обычное дело. Солипсизм, теорию о том, что существует один только разум, а то, что кажется внешней реальностью, — не более чем сон этого разума, невозможно логически опровергнуть. Реальность может состоять из одного человека (возможно этим человеком будете вы), которому снится жизненный опыт. Или она может состоять из вас и меня. Или из планеты Земля и её жителей. И если бы нам снились свидетельства — любые свидетельства — существования других лю­дей, или других планет, или других вселенных, они ничего не доказали бы относительно того, сколько всего этого существует на самом деле.

Поскольку солипсизм и многие схожие теории логически совмести­мы с вашим восприятием любых возможных результатов наблюдений, из них логически невозможно вывести ничего, что касалось бы реаль­ности. Как же тогда я мог сказать, что наблюдаемое поведение теней «исключает» теорию о том, что существует только одна вселенная или что наблюдения солнечного затмения делают мировоззрение Ньюто­на «рационально несостоятельным»? Как это возможно? Если «исклю­чение» не означает «опровержение», что оно означает? Почему нужно заставлять себя менять свое мировоззрение или вообще любое мне­ние из-за чего-то, что было «исключено» таким образом? Создается впе­чатление, что такая критика подвергает сомнению всю науку, любое рассуждение о внешней реальности, которое обращается к результатам наблюдений. Если научное рассуждение не равносильно последователь­ности логических выводов из того, что мы видим, чему оно равносиль­но? Почему мы должны принять его выводы?

Это называется «задачей индукции». Метод берет свое название от теории, которая на протяжении бóльшей части истории науки являлась общепринятой теорией того, как работает наука. Теория заключалась в существовании математически недоказанной, меньшей, но, тем не менее достойной внимания формы доказательства, называемой индук­цией. С одной стороны, индукции противостояли предположительно  {64}  совершенные доказательства, предоставленные дедукцией, а с другой сто­роны, предположительно более слабые философские или интуитивные формы рассуждения, не имевшие даже результатов наблюдений, кото­рые поддержали бы их. В индуктивной теории научного знания наблю­дения играют двоякую роль: сначала — при открытии научных теорий, затем — при их доказательстве. Предполагается, что теорию откры­вают, «экстраполируя» или «обобщая» результаты наблюдений. Тогда, если множество наблюдений соответствует теории и ни одно из них не отклоняется от неё, теорию считают доказанной — более верной, вероятной или надежной. Схема индукции показана на рисунке 3.1.

Рис. 3.1. Схема индукции

Индуктивный анализ моего обсуждения теней должен тогда вы­глядеть примерно следующим образом: «Мы проводим ряд наблюде­ний теней и видим явление интерференции (этап 1). Результаты соот­ветствуют тому, что следовало бы ожидать, если бы существовали па­раллельные вселенные, определенным образом воздействующие друг на друга. Но сначала никто этого не замечает. В конечном итоге, (этап 2) кто-то делает обобщение, что интерференция всегда будет иметь место при данных условиях, а следовательно, путем индукции выводит тео­рию, что за это ответственны параллельные вселенные. С каждым по­следующим наблюдением интерференции (этап 3) мы немного больше убеждаемся в справедливости этой теории. После достаточно большого количества таких наблюдений и при условии, что ни одно из них не противоречит теории, мы делаем вывод (этап 4), что эта теория истин­на. Хотя мы никогда не можем быть уверены абсолютно, мы убеждены настолько, что для практических целей этого достаточно».

Трудно определить, где начать критиковать индуктивное пред­ставление о науке: оно настолько глубоко ложно, ложно по-разному. Возможно, самый большой недостаток, с моей точки зрения, — это чистой воды вывод, не соответствующий посылкам относительно то­го, что обобщенное предсказание равносильно новой теории. Подобно всем научным теориям, разным по глубине, теория существования па­раллельных вселенных просто не имеет формы, в которую её можно  {65}  облечь, исходя из наблюдений. Разве мы наблюдали сначала одну все­ленную, потом вторую и третью, а потом сделали вывод, что сущест­вуют триллионы вселенных? Разве обобщение относительно того, что планеты «блуждают» по небу, создавая одну, а не другую картину, было эквивалентно теории о том, что планеты — это миры, вращающиеся по орбите вокруг Солнца и что Земля — один из них? Также не является истиной то, что повторение наших наблюдений — это способ убедиться в справедливости научных теорий. Как я уже сказал, теории — это объ­яснения, а не просто предсказания. Если предложенное объяснение ряда наблюдений не принято, то вряд ли полезно продолжать вести наблюде­ния. Еще меньше это способно помочь нам создать удовлетворительное объяснение, если мы не можем придумать вообще никакого.

Более того, даже простые предсказания нельзя доказать с помо­щью результатов наблюдений, как показал в своей истории о цыпленке Бертран Рассел. (Во избежание возможных недоразумений позвольте мне подчеркнуть, что это метафорический, антропоморфный цыпле­нок, представляющий собой человека, который пытается понять ре­гулярности вселенной). Цыпленок заметил, что фермер каждый день приходит, чтобы накормить его. Это говорило о том, что фермер будет продолжать каждый день приносить еду. Индуктивисты полагают, что цыпленок «экстраполировал» свои наблюдения в теорию, и каждый раз, когда его кормят, эта теория получает все больше доказательств. Затем однажды пришел фермер и свернул цыпленку шею. Разочарование, ко­торое испытал цыпленок Рассела, испытали триллионы других цыплят. Это индуктивно доказывает вывод, что индукция не может доказать ни одного вывода!

Однако эта критическая линия недостаточна, чтобы сбросить ин­дуктивизм со счетов. Она действительно иллюстрирует тот факт, что многократно повторенные наблюдения не способны доказать теории, но при этом она полностью упускает (или даже принимает) самое основное неправильное представление, а именно: новые теории можно образовать с помощью индуктивной экстраполяции наблюдений. На самом деле, экстраполировать наблюдения невозможно, пока их не поместят в рам­ки объяснений. Например, чтобы «вывести» свое ложное предсказание, цыпленок Рассела должен был сначала придумать ложное объяснение поведения фермера. Возможно, фермер испытывал к цыплятам добрые чувства. Придумай он другое объяснение — что фермер старался от­кормить цыплят, чтобы потом зарезать, например, — и поведение было  {66}  бы «экстраполировано» совсем по-другому. Допустим, однажды фермер начинает приносить цыплятам больше еды, чем раньше. Экстраполя­ция этого нового ряда наблюдений для предсказания будущего пове­дения фермера полностью зависит от того, как его объяснить. В со­ответствии с теорией доброго фермера очевидно, что доброта фермера по отношению к цыплятам увеличилась, и цыплятам теперь совсем не­чего переживать. Но в соответствии с теорией откармливания такое поведение — зловещий признак: очевидно, что смерть близка.

То, что те же самые результаты наблюдений можно «экстраполи­ровать», чтобы дать два диаметрально противоположных предсказания в зависимости от принятого объяснения, причем ни одно из них не­возможно доказать, — не просто случайное ограничение, связанное со средой обитания фермера: это относится ко всем результатам наблю­дений, при любых обстоятельствах. Наблюдения не могут играть ни одну роль, которую им приписывает схема индуктивизма, даже в от­ношении простых предсказаний, не говоря уже о настоящих объясни­тельных теориях. Надо признаться, что индуктивизм основан на разум­ной теории роста знания (которое мы получаем из жизненного опыта), и исторически он ассоциировался с освобождением науки от догмы и тирании. Но если мы хотим понять истинную природу знания и его место в структуре реальности, мы должны признать, что индуктивизм абсолютно ложен. Ни одно научное объяснение, а в действительности, и ни одно успешное объяснение любого рода никогда не подходило под описание индуктивистов.

Какова же тогда картина научных рассуждении и открытий? Мы поняли, что индуктивизм и все остальные теории знания, направлен­ные на предсказания, основаны на неправильном представлении. Нам необходима теория знания, нацеленная на объяснение: теория о том, как появляются объяснения и как их доказывают; как, почему и когда нам следует позволить своему восприятию изменить наше мировоззрение. Как только у нас будет такая теория, отдельная теория предсказаний нам больше не понадобится. При наличии объяснения какого-то наблю­даемого явления метод получения предсказаний уже не является загад­кой. И если объяснение доказано, то любые предсказания, полученные из этого объяснения, тоже автоматически доказаны.

К счастью, общепринятую теорию научного познания, которая сво­ей современной формулировкой обязана главным образом философу Карлу Попперу (и которая является одной из моих четырех «основных  {67}  нитей» объяснения структуры реальности), в этом смысле действитель­но можно считать объяснительной теорией. Она рассматривает науку как процесс решения задач. Индуктивизм рассматривает список наших прошлых наблюдений как некий скелет теории, считая, что вся нау­ка состоит в заполнении пробелов этой теории путем интерполяции и экстраполяции. Решение задач начинается с неадекватной теории — а не с понятийной «теории», состоящей из прошлых наблюдений. Оно начинается с наших лучших существующих теорий. Когда некоторые из этих теорий кажутся нам неадекватными и мы начинаем нуждаться в новых, это и составляет задачу. Таким образом, в противовес схеме индукции, показанной на рисунке 3.1, научное открытие не должно на­чинаться с результатов наблюдений. Но оно всегда начинается с зада­чи. Под «задачей» я понимаю не обязательно практическую трудную ситуацию или источник трудностей. Я имею в виду набор идей, ко­торый выглядит неадекватным и который стоит попытаться усовер­шенствовать. Существующее объяснение может показаться слишком многословным или слишком трудным; оно также может показаться из­лишне конкретным или нереально амбициозным. Может промелькнуть возможное объединение с другими идеями. Или объяснение, удовле­творительное в одной области, может оказаться несовместимым с та­ким же удовлетворительным объяснением из другой области. Или, мо­жет быть, были удивительные наблюдения, как-то: блуждающие пла­неты, — которые существующие теории не могли ни предсказать, ни объяснить.

Последний тип задачи напоминает первый этап схемы индукти­вистов, но лишь поверхностно. Неожиданное наблюдение никогда не порождает научное открытие, если только существующие до него тео­рии уже не содержат зачатки задачи. Например, облака блуждают даже больше, чем планеты. Это непредсказуемое блуждание, по-видимому, было известно задолго до того, как открыли планеты. Более того, про­гнозы погоды всегда ценили фермеры, моряки и солдаты, так что всег­да существовал стимул создать теорию движения облаков. Тем не ме­нее, не метеорология, а астрономия оставила след для современной на­уки. Результаты наблюдений метеорологии были гораздо более легко доступными, чем результаты наблюдений астрономии, но никто не об­ращал на них особого внимания и никто не выводил из них теорий относительно холодных фронтов или антициклонов. История науки не была загружена спорами, догмами, ересью, размышлениями и тщательно  {68}  продуманными теориями о природе облаков и их движения. Поче­му? Потому что при установившейся объяснительной теории погоды было совершенно ясно, что движение облаков непредсказуемо. Здра­вый смысл подсказывает, что движение облаков зависит от ветра. Ког­да они движутся в разных направлениях, разумно предположить, что на разной высоте разный ветер, и это вряд ли возможно предугадать, а потому легко сделать вывод, что объяснять больше нечего. Некото­рые люди несомненно переносили этот взгляд на планеты и считали их просто сияющими объектами на небесной сфере, которые на большой высоте разгонял ветер, или, возможно, перемещали ангелы, и большего объяснения не требовалось. Но других это не удовлетворяло: они пред­полагали, что за блужданием планет стоят более глубокие объяснения. Поэтому они искали такие объяснения и находили их. В разные времена в истории астрономии появлялись то массы необъясненных результатов наблюдений, то лишь крупицы таких свидетельств, а то их и вовсе не было. Но выбирая предмет создания теории, соответствующий собран­ным наблюдениям конкретного явления, они неизменно должны были бы выбирать облака, а не планеты. Тем не менее, они выбирали плане­ты и делали это по различным причинам. Некоторые причины зависели от предубеждений относительно того, какой должна быть космология, или от споров древних философов, или от мистической нумерологии. Некоторые основывались на физике того времени, другие — на мате­матике или геометрии. Некоторые причины оказались объективными, другие — нет. Но каждая из них означала следующее: кому-то каза­лось, что существующие объяснения требуют усовершенствования и они должны его получить.

При решении задачи мы ищем новые или усовершенствованные теории, которые содержат объяснения без недостатков, но сохраняют достоинства существующих теорий (рисунок 3.2). Таким образом, за постановкой задачи (этап 1) следует гипотеза: высказывание новых теорий, изменение или новое толкование старых для решения задачи (этап 2). Затем гипотезы подвергают критике, что позволяет (если кри­тика рациональна) исследовать и сравнить теории, чтобы выбрать ту, которая содержит лучшие объяснения относительно критериев задачи (этап 3). Выдвинутую теорию, не прошедшую испытание критикой, то есть предлагающую худшие объяснения по сравнению с другими тео­риями, исключают. Заменив одну из первоначально принятых теорий на вновь предложенную (этап 4), мы предварительно считаем, что  {69}  де­лаем успехи в решении задачи. Я говорю «предварительно», потому что последующее решение задачи возможно потребует корректировки или замены даже этих новых, на первый взгляд, удовлетворительных тео­рий, а иногда даже возврата к некоторым, ранее признанным неудов­летворительными. Таким образом, решение, каким бы хорошим оно ни было, ещё не конец процесса: это начало процесса решения следующей задачи (этап 5). Это иллюстрирует ещё одно ошибочное представление индуктивизма. Задача науки заключается не в том, чтобы найти тео­рию, которая будет считаться вечной истиной, а в том, чтобы найти лучшую на данный момент теорию и если это возможно, внести поправ­ки во все имеющиеся теории. Научная дискуссия необходима, чтобы убедиться, что данное объяснение — лучшее из имеющихся. Она ни­чего не говорит, да и не может сказать, относительно того, выдержит ли это объяснение впоследствии новую критику и сравнение с вновь найденными объяснениями. Хорошее объяснение может дать хорошие предсказания относительно будущего, но ни одно объяснение не способ­но предугадать содержание или качество своих будущих конкурентов.

Рис. 3.2. Процесс решения задачи

То, что я описал до настоящего момента, применимо к решению лю­бых задач независимо от темы рассматриваемого предмета или методов рациональной критики. Решение научных задач всегда содержит кон­кретный метод рациональной критики — экспериментальную проверку. Когда две или более конкурирующих теории дают противоположные предсказания результатов эксперимента, этот эксперимент проводят, а теорию или теории, предсказания которых оказались ложными, от­вергают. Сама структура научных гипотез направлена на нахождение объяснений, предсказания которых можно проверить эксперименталь­но. В идеале мы всегда ищем решающие экспериментальные проверки — эксперименты, результат которых, каким бы он ни был, заявит о не­состоятельности одной или нескольких конкурирующих теорий. Этот процесс показан на рисунке 3.3. Независимо от того, включала ли по­становка задачи наблюдения (этап 1) и были ли конкурирующие те­ории придуманы только для экспериментальной проверки, именно на  {70}  этой критической фазе научного открытия (этап 3) экспериментальные проверки играют решающую и определяющую роль. Эта роль состоит в том, чтобы объявить некоторые конкурирующие теории неудовлетво­рительными, обнаружив, что их объяснения приводят к ложным пред­сказаниям. Здесь я должен упомянуть об асимметрии, которая очень важна в философии и методологии науки: асимметрии между экспе­риментальным опровержением и экспериментальным подтверждением. Тогда как неправильное предсказание автоматически переводит лежа­щее в его основе объяснение в разряд неудовлетворительных, правиль­ное предсказание вообще ничего не говорит об объяснении, лежащем в его основе. Еще хуже неправильные объяснения, дающие правильные предсказания, что должны бы иметь в виду разные любители НЛО, теоретики-конспираторы и псевдоученые (но чего они никогда не дела­ют).

Рис. 3.3. Последовательность научного открытия

Если теорию о наблюдаемых событиях невозможно проверить, то есть ни одно возможное наблюдение её не исключает, значит она са­ма не может объяснить, почему эти события происходят именно так, как наблюдается, а не иначе. Например, «ангельскую» теорию дви­жения планет проверить невозможно, потому что независимо от то­го, как планеты движутся, это движение можно приписать влиянию ангелов; следовательно, теория ангелов не может объяснить конкрет­ное движение планет, которое мы видим, пока его не дополнит тео­рия о том, как движутся ангелы. Именно поэтому в науке есть ме­тодологическое правило, которое гласит, что как только теория, ко­торую можно экспериментально проверить, прошла соответствующую проверку, любые другие менее проверяемые теории, конкурирующие с ней и касающиеся того же явления, отвергают сразу же, посколь­ку их объяснения, несомненно, окажутся хуже. На это правило часто ссылаются как на правило, которое отличает науку от других видов создания знания. Но, принимая то, что наука заключается в объясне­ниях, мы понимаем, что это правило — действительно особый слу­чай, применимый к решениям любых задач: теории, способные дать  {71}  более подробные объяснения, автоматически становятся предпочти­тельными. Эти теории предпочитают по двум причинам. Первая со­стоит в том, что теория, которая «заметна» своей конкретностью от­носительно большего числа явлений, открывает себя и своих сопер­ников большему проявлению критики, а следовательно, у неё больше шансов продвинуть процесс решения задачи вперед. Вторая причина просто в том, что если такая теория выдержит критику, она полу­чит ещё большее количество объяснений, что и является задачей на­уки.

Я уже отметил, что даже в науке экспериментальные проверки не составляют бóльшую часть критики. Так происходит потому, что на­учная критика большей частью направлена не на предсказание теорий, а непосредственно на объяснения, которые лежат в их основе. Провер­ка предсказаний — это лишь косвенный способ (хотя при возможнос­ти его использования исключительно мощный) проверки объяснений. В главе 1 я привел пример «лечения травой» — теории о том, что, съев килограмм травы, можно вылечиться от обычной простуды. Эту тео­рию и множество других, ей подобных, легко проверить. Но мы можем критиковать и отбрасывать их, даже не проводя эксперименты, просто на основе того, что они объясняют не больше предшествующих теорий, противоречащих им, но делают новые допущения, которые невозможно объяснить.

Научное открытие редко проходит последовательно все стадии, по­казанные на рисунке 3.3, с первой попытки. До завершения или даже решения каждого этапа обычно применяют повторяющийся поиск с воз­вратом, поскольку на каждом этапе может возникнуть задача, для ре­шения которой необходимо пройти все пять этапов вспомогательного процесса решения задач. Это применимо даже к этапу 1, поскольку первоначальную задачу нельзя назвать непреложной. Если мы не мо­жем придумать хорошие варианты решения, мы можем вернуться на первый этап и попытаться сформулировать задачу иначе, а возможно, и выбрать другую задачу. На самом деле, кажущаяся нерешаемость — только одна из множества причин, почему зачастую мы хотим изме­нить задачи, которые решаем. Некоторые варианты задачи несомнен­но более интересны или в большей степени подходят другим задачам; другие — лучше сформулированы; третьи кажутся потенциально бо­лее эффективными или более насущными и т. д. Часто вопрос о том, в чем точно заключается задача и какие качества должны быть  {72}  присущи «хорошему» объяснению, подвергается такой же критике и тем же гипотезам, что и пробные решения.

Точно так же, если критика на этапе 3 не выберет одну из конку­рирующих теорий, мы попытаемся изобрести новые методы критики. Если и это не поможет, мы можем вернуться на этап 2 и попытаться уточнить предлагаемые нами решения (и существующие теории) так, чтобы извлечь из них больше объяснений и предсказаний и облегчить поиск их недостатков. Мы также можем вновь вернуться к этапу 1 и попытаться найти лучшие критерии объяснений. И так далее.

Существует не только постоянный возврат, многие подзадачи оста­ются действующими одновременно, и к ним приходится обращаться по мере возможности. И лишь когда открытие сделано, четкую его после­довательность можно представить так, как показано на рисунке 3.3. Эта последовательность может начаться с самого последнего и наи­лучшего варианта постановки задачи; затем она может показать, ка­ким образом некоторые из отвергнутых теорий не выдержали крити­ки; представить победившую теорию и сказать, почему она выдержала критику; объяснить, как обойтись без вытесненной теории; и, наконец, указать несколько новых задач, которые создает или предусматривает это открытие.

В процессе решения задачи мы имеем дело с огромным неоднород­ным набором идей, теорий и критериев, представленных в разных кон­курирующих между собой вариантах. Существует непрерывная смена теорий по мере того, как они изменяются или их вытесняют новые те­ории. Таким образом, все теории подвергаются изменению или отбору в соответствии с критериями, которые тоже подвергаются изменению или отбору. Весь процесс напоминает биологическую эволюцию. Зада­ча подобна экологической нише, а теория — гену или виду, который проверяют на жизнеспособность в этой нише. Подобно генетическим мутациям постоянно возникают новые варианты теорий, и менее удач­ные варианты отмирают, когда им на смену приходят более удачные. «Удача» — это способность выживать под постоянным избирательным давлением — критикой, — властвующим в этой нише, причем её кри­терии частично зависят от физических характеристик ниши, частично от качеств, присущих другим генам и видам (т. е. другим идеям), ко­торые уже там присутствуют. Новое мировоззрение, которое неявно может присутствовать в теории, решающей задачу, и отличительные черты нового вида, занимающего нишу, — исходящие свойства зада­чи  {73}  или ниши. Другим словами, процесс получения решений изначально сложен. Не существует простого способа открыть истинную природу планет, задаваясь, скажем, критикой теории небесной сферы и неко­торыми дополнительными наблюдениями, так же, как не существует простого способа составить ДНК коалы, опираясь на свойства эвкалип­тов. Эволюция или метод проб и ошибок — особенно сконцентриро­ванная, целенаправленная форма этого метода, называемая научным открытием, — единственный способ осуществить это.

Именно по этой причине Поппер назвал свою теорию о том, что зна­ние может увеличиться только через гипотезы и опровержения, как показано на рисунке 3.3, эволюционной эпистемологией. Это важное объединяющее понимание. Мы увидим, что между этими фундамен­тальными теориями существуют и другие связи. Но я не хочу пре­увеличивать сходство научного открытия и биологической эволюции, поскольку между ними существуют и значительные отличия. Одно из отличий заключается в том, что в биологии вариации (мутации) про­исходят беспорядочно, слепо и бесцельно, тогда как при решении задач создание новых гипотез — процесс сам по себе комплексный, основан­ный на знаниях и движимый намерениями людей, в нем заинтересо­ванных. Но, может быть, даже более важное отличие заключается в от­сутствии биологического эквивалента аргумента. Все гипотезы необхо­димо проверять экспериментально, что является одной из причин того, что биологическая эволюция протекает в астрономическое число раз более медленно и менее эффективно. Тем не менее, между этими дву­мя процессами существует не просто аналогия, а более глубокая связь: они входят в число тесно связанных между собой «основных нитей» объяснения структуры реальности.

Как в науке, так и в биологической эволюции эволюционный успех зависит от возникновения и выживания объективного знания, которое в биологии называется адаптацией. То есть способность теории или гена выжить в нише — не бессистемная функция его структуры, она зависит от того, достаточно ли истинная и полезная информация о нише явно или неявно закодирована там. К этому я вернусь в главе 8.

Теперь становится понятнее, что оправдывает те выводы, которые мы делаем из наблюдений. Мы никогда не делаем выводов из одних наблюдений, но наблюдения могут сыграть значительную роль в про­цессе доказательства, показывая недостатки некоторых конкурирую­щих объяснений. Мы выбираем научную теорию, потому что аргументы  {74}  (только некоторые из которых зависят от наблюдений) убедили нас (на данный момент), что объяснения, предлагаемые всеми остальными конкурирующими теориями менее точны, менее обширны или глубоки.

Давайте сравним рисунки 3.1 и 3.3. Посмотрите, насколько отлича­ются эти две концепции научного процесса. Индуктивизм основывается на наблюдениях и предсказаниях, тогда как наука в действительности основывается на задачах и объяснениях. Индуктивизм предполагает, что теории каким-то образом извлекают или получают из наблюдений, или доказывают с помощью наблюдений, тогда как в действительнос­ти теории начинаются с недоказанных гипотез, возникших в чьем-то разуме и, как правило, предшествующих наблюдениям, исключающим конкурирующие теории. Индуктивизм ищет доказательства предска­заний как вероятных будущих событий. Процесс решения задач дока­зывает объяснение, которое превосходит все остальные имеющиеся на данный момент объяснения. Индуктивизм — опасный источник повто­ряющихся ошибок разного рода потому что на первый взгляд, он весьма правдоподобен. Но это не так.

Успешно решая задачу, научную или любую другую, в конечном итоге мы получаем набор теорий, которые предпочитаем начальным те­ориям несмотря на то, что они снова содержат задачи. Следовательно, новые качества, которые будут присущи новым теориям, зависят от то­го, что мы посчитаем недостатками наших первоначальных теорий, то есть от того, в чем заключалась задача. Наука характеризуется как сво­ими задачами, так и своими методами. Астрологи, решающие задачу составления более интригующих гороскопов без риска быть уличенны­ми в неправоте, вряд ли создали много того, что заслуживает названия научного знания, даже если они использовали настоящие научные ме­тоды (например, исследование рынка) и сами в достаточной степени удовлетворены найденным решением. Задача настоящей науки всегда заключается в том, чтобы понять какой-то аспект структуры реальнос­ти, изыскивая объяснения, настолько обширные и глубокие, истинные и точные, насколько это возможно.

Когда мы считаем, что решили задачу, мы естественно принимаем новый набор теорий вместо старого. Именно поэтому наука, если её рас­сматривать как ищущую объяснений и решающую задачи, не ставит «задачи индукции». И нет никакого секрета в том, почему у нас должно появиться непреодолимое желание экспериментально принять объясне­ние, превосходящее все объяснения, которые мы можем придумать.  {75} 

ТЕРМИНОЛОГИЯ

Солипсизм — теория о том, что существует только один разум, а то, что кажется внешней реальностью, — не более чем сон этого ра­зума.

Задача индукции — поскольку научные теории невозможно ло­гически доказать с помощью наблюдений, как их можно доказать?

Индукция — придуманный процесс, с помощью которого, как считалось, были получены из накопленных наблюдений или доказаны с их помощью общие теории.

Задача — задача существует, когда кажется, что некоторые наши теории, особенно их объяснения, неадекватны и требуют усовершенст­вования.

Критика — рациональная критика сравнивает конкурирующие теории с целью определения, какая из них предлагает лучшие объясне­ния в соответствии с критериями задачи.

Наукацель науки — понять реальность через объяснения. Ха­рактерный (хотя и не единственный) метод критики, используемый в науке — экспериментальная проверка.

Экспериментальная проверка — эксперимент, результат ко­торого может признать ложным одну или несколько конкурирующих теорий.

РЕЗЮМЕ

В фундаментальных областях науки наблюдение даже небольших, едва различимых эффектов приводит нас к более грандиозным выво­дам относительно природы реальности. Тем не менее, эти выводы не­возможно логически получить только из наблюдений. Что же делает их неопровержимыми? «Задача индукции». Согласно индуктивизму науч­ные теории открывают, экстраполируя результаты наблюдений, и до­казывают, получая подтверждающие их наблюдения. На самом деле индуктивное рассуждение неправильно: невозможно экстраполировать наблюдения до тех пор, пока для них не существует объяснительного стержня. Однако опровержение индуктивизма, а также действитель­ное решение задачи индукции зависит от признания того, что наука — это не процесс выведения предсказаний из наблюдений, а процесс по­иска объяснений. Сталкиваясь с задачей, мы ищем объяснения среди  {76}  уже существующих. Затем мы начинаем процесс решения задачи. Но­вые объяснительные теории начинаются с недоказанных гипотез, кото­рые мы критикуем и сравниваем в соответствии с критериями задачи. Теории, которые не выдерживают критики, мы отбрасываем. Теории, выдержавшие критику, становятся общепринятыми, некоторые из них содержат задачи и потому приводят нас к поиску ещё лучших объяс­нений. Весь процесс напоминает биологическую эволюцию.


Таким образом, решая задачи и находя объяснения, мы приобре­таем даже больше знаний о реальности. Но когда все сказано и сдела­но, задачи и объяснения размещаются в человеческом разуме, который своей способностью рассуждать обязан подверженному ошибкам мозгу, а доставкой информации — подверженным ошибкам чувствам. Что же тогда дает человеческому разуму право делать выводы об объектив­ной внешней реальности, исходя из своего чисто субъективного опыта и рассуждения?  {77} 




ГЛАВА 4

Критерии реальности

Великий физик Галилео Галилей, которого также можно считать первым физиком в современном смысле, сделал много открытий не только в самой физике, но и в методологии науки. Он воскресил древ­нюю идею о выражении общих теорий, касающихся природы, в мате­матической форме и усовершенствовал её, разработав метод система­тических экспериментальных проверок, характеризующий науку, как мы её знаем. Он удачно назвал такие проверки cimenti, или «тяжелые испытания». Он одним из первых начал использовать телескопы для изучения небесных тел, он собрал и проанализировал данные для ге­лиоцентрической теории, теории о том, что Земля движется по орбите вокруг Солнца и вращается вокруг своей собственной оси. Он широко известен как защитник этой теории, из-за которой он и вступил в ожес­точенный конфликт с Церковью. В 1633 году Инквизиция судила его как еретика и под угрозой пыток принудила встать на колени и вслух прочитать длинное унизительное отречение, в котором говорилось, что он «отрекается» от гелиоцентрической теории и «проклинает» её. (Ле­генда гласит, может и ошибочно, что, поднявшись на ноги, он пробор­мотал «eppur si muove...», что значило «и всё-таки она вертится...».) Несмотря на это отречение, его осудили и приговорили к домашнему аресту, под которым он оставался до конца своей жизни. Хотя это нака­зание было сравнительно мягким, оно вполне достигло своей цели. Как сказал об этом Якоб Броновски:

«В результате среди всех ученых-католиков на долгие годы воца­рилось молчание... Цель суда и заключения состояла в том, чтобы положить конец научной традиции Средиземноморья» (The Ascent of Man [4], с. 218).

Каким образом спор об устройстве солнечной системы мог иметь столь далеко идущие последствия, и почему спорщики столь страстно отстаивали свои позиции? Дело в том, что на самом деле спор шел не об  {78}  устройстве солнечной системы, а о том, как блестяще Галилео защищал новый и опасный взгляд на реальность. Спор шел не о существовании реальности, поскольку как Галилео, так и Церковь верили в реализм, разумно полагая, что видимая физическая вселенная действительно су­ществует и воздействует на наши чувства, включая и чувства, усилен­ные такими приборами, как телескоп. Галилео расходился с церковью в своем понимании отношения между физической реальностью, с од­ной стороны, и человеческими мыслями, наблюдениями и рассуждениями, с другой. Он считал, что вселенную можно понять, основываясь на универсальных, математически сформулированных законах, и что все люди могут получить надежное знание этих законов, если применят его метод математической формулировки и систематических экспери­ментальных проверок. Говоря его словами: «Книга Природы написана математическими символами». Это было сознательное сравнение с той другой Книгой, на которую традиционно полагались.

Галилео понимал, что если его метод действительно надежен, то, где бы его ни применяли, его выводы всегда будут более предпочти­тельны, чем все остальные, полученные с помощью других методов. Поэтому он настаивал, что научное рассуждение превосходит не только интуицию и здравый смысл, но и религиозные доктрины и откровения. Именно эту идею, а не гелиоцентрическую теорию, как таковую, влас­ти сочли опасной. (И они были правы, если и существует идея, способ­ная вызвать научную революцию и Просвещение, создать нецерковную основу современной цивилизации, то это была именно она.) Было запре­щено «придерживаться» гелиоцентрической теории или «защищать» её как объясняющую вид ночного неба. Разрешено было использовать эту теорию, писать о ней, считать её «математическим допущением» или защищать её как метод предсказания. Именно поэтому книга Галилео «Dialogue of the Two World Systems»[5], которая сравнивала гелиоцентри­ческую теорию с официальной геоцентрической, была изъята из печати церковной цензурой. Папа дал свое согласие ещё до написания Гали­лео этой книги (хотя на суде и был создан вводивший в заблуждение документ о том, что Галилео было запрещено вообще обсуждать этот предмет).

С точки зрения истории интересна следующая сноска: во време­на Галилея вопрос о том, давала ли гелиоцентрическая теория лучшие  {79}  предсказания, чем геоцентрическая, ещё не считался бесспорным. Име­ющиеся наблюдения были не слишком точными. Для повышения точ­ности геоцентрической теории предлагались специальные изменения, и было сложно определить предсказательные способности двух конку­рирующих теорий. Более того, когда дело доходит до мелочей, оказы­вается, что существует нечто большее, чем гелиоцентрическая теория. Галилео считал, что планеты движутся по окружности, тогда как на самом деле их орбиты весьма близки к эллипсам. Таким образом, эти данные не вписывались в ту частную гелиоцентрическую теорию, ко­торую защищал Галилео. (Многовато за то, в чем он был убежден из-за собранных наблюдений!) Но несмотря на все это, Церковь не заняла в этом споре никакой позиции. Инквизиции было безразлично, где, как казалось, находятся планеты; их заботила только реальность. Их забо­тило, где действительно находятся планеты, и они хотели понять пла­неты через объяснения, как это делал Галилео. Инструменталисты и позитивисты сказали бы, что, поскольку Церковь была готова принять наблюдательные предсказания Галилео, дальнейший спор между ними был нецелесообразен, и что его слова «и всё-таки она вертится» были абсолютно бессмысленны. Но Галилео, да и Инквизиция, знали боль­ше. Отрицая надежность научного знания, инквизиторы подразумевали именно объяснительную часть этого знания.

Их мировоззрение было ошибочным, но оно не было нелогичным. Следует признать, что они считали откровение и традиционный авто­ритет источниками надежного знания. Но у них была и независимая причина критиковать надежность знания, полученного методами Га­лилео. Они могли просто обратить всеобщее внимание на то, что ника­кое количество наблюдений или споров не способно доказать, что одно объяснение физического явления истинно, а другое ложно. Как они вы­разились бы, Бог мог осуществить те же самые наблюдения бесконеч­но большим количеством разных способов, а потому заявлять о своем знании того метода, который Он выбрал, основываясь только на своих собственных ошибочных наблюдениях и причинах — это чистой воды тщеславие и самоуверенность.

В некоторой степени они спорили за скромность, за признание под­верженности человека ошибкам. И, если уж Галилео заявлял, что ге­лиоцентрическая теория была каким-то образом доказана или близка к тому, чтобы быть доказанной, в некотором индуктивном смысле, то их спор не был бесцельным. Если Галилео считал, что его методы могут  {80}  обеспечить любой теории авторитет, сравнимый с тем, которого Цер­ковь требовала для своих доктрин, они имели право критиковать его за самоуверенность (или, как они говорили, за богохульство), хотя, без­условно, по этим меркам сами они были самоуверенны даже в бóльшей степени.

Так как же мы можем защитить Галилео от Инквизиции? Какой должна была быть защита Галилео перед обвинением в том, что он слишком много берет на себя, заявляя, что научные теории содержат надежное знание реальности? Попперианская защита науки как процес­са решения задач и поиска объяснений сама по себе недостаточна. Дело в том, что сама Церковь была прежде всего заинтересована в объясне­ниях, а не в предсказаниях и не препятствовала тому, чтобы Галилео решал задачи с помощью любой выбранной им теории. Она попросту не соглашалась с тем, что решения Галилео (которые она называла прос­тыми «математическими гипотезами») имели хоть какое-то отношение к внешней реальности. Как-никак решение задач — процесс, полностью происходящий в человеческом разуме. Возможно, Галилео видел весь мир как книгу, в которой законы природы написаны математическими символами. Однако это всего лишь метафора, поскольку там нет объ­яснений нахождения планет на орбите. Мы сами создали тот факт, что все задачи и решения находятся в нас. Решая научные задачи, через об­суждение мы приходим к тем теориям, объяснения которых кажутся нам наилучшими. То есть, ни в коей мере не отрицая, что решать зада­чи необходимо и полезно, Инквизиция и современные скептики вправе спросить нас, как связано решение научных задач с реальностью. Мы можем счесть наши «лучшие объяснения» психологически удовлетво­рительными. Мы можем посчитать их полезными для предсказания. Мы, безусловно, находим их жизненно важными в любой области тех­нического творчества. Все это оправдывает наш непрерывный поиск этих решений и использование их именно в этих целях. Но почему мы обязаны воспринимать их как факт? В действительности, Инквизиция вынудила Галилео сделать следующее заявление: Земля неподвижна, а остальные планеты движутся вокруг нее; но траектории движения этих небесных тел расположены некоторым сложным образом, кото­рый, с точки зрения наблюдателя на Земле, также согласуется с тем, что Солнце неподвижно, а Земля и другие планеты движутся. Я назову это «Инквизиционной теорией» солнечной системы. Если бы Инквизи­ционная теория была истинной, мы всё ещё ждали бы от гелиоцент­рической  {81}  теории точных предсказаний относительно результатов всех астрономических наблюдений с Земли, даже если фактически они бы­ли бы ложными. Следовательно, может показаться, что любые наблю­дения, на первый взгляд подтверждающие гелиоцентрическую теорию, в равной степени подтверждают и Инквизиционную теорию.

Можно расширить теорию Инквизиции для объяснения более де­тальных наблюдений в поддержку гелиоцентрической теории, как-то: наблюдение фаз Венеры и маленьких дополнительных движений (на­зываемых «собственными движениями») некоторых звезд относитель­но небесной сферы. Для этого необходимо постулировать, что даже бо­лее сложные движения в пространстве управляются законами физи­ки, весьма отличными от тех, которые действуют на нашей предпо­ложительно неподвижной Земле. Но эти движения могут отличаться ровно настолько, чтобы оставаться согласованными с наблюдениями на Земле, находящейся в движении, а их законы будут аналогичны тем, которые существуют здесь. Возможны многие подобные теории. В самом деле, если бы правильные предсказания были нашим един­ственным ограничением, мы могли бы изобрести теории о том, что в космическом пространстве происходит все, что нам угодно. Напри­мер, одни наблюдения никогда не смогли бы исключить теорию о том, что Земля заключена в гигантский планетариум, представляющий со­бой модель гелиоцентрической солнечной системы, и что вне этого планетариума находится все что вашей душе угодно или вообще ни­чего. Чтобы учесть современные наблюдения, следует признать, что планетарию также пришлось бы переориентировать импульсы наших радаров и лазеров, захватывать наши космические исследовательские ракеты и даже космонавтов, посылать обратно ложные сообщения от них и возвращать их с подходящими образцами лунного грунта, из­менять наши воспоминания и т. д. Возможно, эта теория абсурдна, но её невозможно исключить с помощью эксперимента. Кроме того, ни одну теорию нельзя исключить, основываясь только на том, что она «абсурдна»: Инквизиция, да и большинство людей во времена Галилео, считали верхом абсурда заявлять, что Земля движется. Ведь мы не можем почувствовать её движение, не так ли? Когда она движется, как при землетрясении, мы чувствуем это безошибочно. Говорят, что Галилео в течение нескольких лет откладывал публичную защиту ге­лиоцентрической теории не из-за боязни Инквизиции, а из-за боязни быть осмеянным.  {82} 

Нам теория Инквизиции кажется безнадежно запутанной. По­чему мы должны принять столь сложную и специфическую оцен­ку именно такого вида неба, когда неприукрашенная гелиоцентри­ческая космология дает то же самое, только с меньшим ажиота­жем? Мы можем сослаться на принцип бритвы Оккама: «не нужно придумывать ничего лишнего, если в этом нет необходимости», — или, как мне больше нравится, — «не усложняйте объяснения, если в этом нет необходимости», потому что в противном случае излиш­ние усложнения останутся без объяснения. Однако наличие или от­сутствие «запутанности» или «излишней усложненности» объяснения зависит от всех остальных идей и объяснений, которые составляют мировоззрение человека. Инквизиция считала, что идея о движущей­ся Земле — излишнее усложнение. Эта идея противоречит здраво­му смыслу; она противоречит Священным Писаниям; и (они сказали бы) существует прекрасное объяснение, которое вполне обходится без неё.

Но существует ли? Действительно ли теория Инквизиции да­ет альтернативные объяснения, лишенные противоречащих интуиции «усложнений», присущих гелиоцентрической системе? Давайте рассмот­рим поподробнее, каким образом теория Инквизиции рассматривает все. Она объясняет видимую неподвижность Земли, говоря, что она является неподвижной. Как полно и глубоко! Безусловно, это объясне­ние превосходит объяснение Галилео, которому пришлось немало по­трудиться и опровергнуть некоторые общепринятые понятия о силе и инерции, чтобы объяснить, почему мы не ощущаем движение Земли. Но как теория Инквизиции справится с более сложной задачей объяс­нения движения планет?

Гелиоцентрическая теория объясняет их движение тем, что мы видим, как планеты движутся по небу сложными петлями, потому что, в действительности, они движутся в пространстве по маленьким окружностям (или эллипсам), но и Земля тоже движется. Объяснение Инквизиции заключается в том, что мы видим, как планеты движутся по небу сложными петлями, потому что они и в пространстве движутся сложными петлями; но (и здесь в соответствии с Инквизицией следует суть объяснения) этим сложным движением управляет простой основ­ной принцип, а именно: планеты движутся так, что, когда мы смотрим на них с Земли, кажется, что и они, и Земля движутся по простым орбитам вокруг Солнца.  {83} 

Чтобы понять движение планет на основе теории Инквизиции, не­обходимо понять этот принцип, поскольку налагаемые им ограниче­ния — основа всех детальных объяснений, которые можно сделать в рамках этой теории. Например, если бы кого-то спросили, почему парад планет произошел такого-то числа или почему планета изменила траекторию своего движения по небу на петлю определенной формы, ответ всегда был бы следующим: «потому что именно так все выгля­дело бы, если бы гелиоцентрическая теория была истинной». Итак, это и есть космология — космология Инквизиции, — которую можно по­нять только на основе отличной от неё, гелиоцентрической космологии, которой она противоречит, но которую полностью копирует.

Если бы Инквизиция всерьез попыталась понять мир на основе те­ории, которую она пыталась навязать Галилео, она бы тоже поняла её губительную слабость, а именно: что она не решает ту задачу, которую имеет целью решить. Она не объясняет движение планет «без усложне­ний, присущих гелиоцентрической системе». Напротив, она неизбежно включает эту систему как часть своего собственного принципа объяс­нения движения планет. Невозможно понять мир через теорию Инкви­зиции, не поняв прежде гелиоцентрическую теорию.

Следовательно, мы не ошибаемся, когда считаем теорию Инквизи­ции скрытым усложнением гелиоцентрической теории, а не наоборот. Мы пришли к такому выводу, не сравнивая теорию Инквизиции с со­временной космологией, что было бы равноценно замкнутому кругу, а всерьез воспринимая эту теорию как объяснение мира. Я уже упо­минал теорию о лечении с помощью травы, которую можно исключить без экспериментальной проверки, поскольку она не содержит объясне­ний. И вновь у нас есть теория, которую можно исключить без экс­периментальной проверки, поскольку она дает плохие объяснения — объяснения, которые сами по себе хуже, чем те, которые предлагает конкурирующая теория.

Как я уже сказал, инквизиторы были реалистами. Тем не менее, их теория имеет общую с солипсизмом черту: и та и другая проводят про­извольную границу, за которую, как они утверждают, человеческий разум не имеет доступа, или за которой, по крайней мере, решение задач — это не путь к пониманию. Для солипсистов эта граница окру­жает их собственный мозг, или, возможно, их абстрактный разум, или нематериальную душу. Для Инквизиции эта граница  {84}  охватывает всю Землю. Некоторые современные представители теории креационизма верят в существование такой же границы, только не пространственной, а временной, поскольку они считают, что вселенная была создана всего шесть тысяч лет назад и дополнена вводящими в заблуждение свиде­тельствами о более ранних событиях. Бихевиоризм — это теория о том, что не имеет смысла объяснять поведение людей на основе внутрен­них психических процессов. Для бихевиористов единственной приемле­мой психологией является изучение наблюдаемых реакций человека на внешние раздражители. Таким образом, они проводят точно такую же границу, как и солипсисты, отделяя человеческий разум от внешней ре­альности; только солипсисты говорят о бессмысленности рассуждений, о чем-то, находящемся по другую сторону этой границы, а бихевиорис­ты говорят о бессмысленности рассуждений о том, что находится по эту сторону границы.

В связи с этим существует большой класс родственных теорий, но мы вполне можем рассматривать их как варианты солипсизма. Они от­личаются друг от друга тем, где проводят границу реальности (или границу той части реальности, которая понятна через решение задач) и тем, по какую сторону этой границы они ищут знание. Но все они считают, что научный рационализм и другие решения задач неприме­нимы за пределами этой границы — это просто игра. Они могут до­пустить, что эта игра может быть удовлетворительной и полезной, но она остается всего лишь игрой, из которой невозможно сделать обос­нованных выводов относительно реальности, находящейся по другую сторону границы.

Они очень похожи в своем основном возражении решению задач как средству создания знания, состоящему в том, что решение задач не делает выводов из каких бы то ни было первичных источников мо­тивации. В рамках выбранных ими границ сторонники всех этих те­орий полагаются на методологию решения задач, будучи уверенными в том, что поиск лучшего из имеющихся объяснений — это также и способ найти самую истинную из имеющихся теорий. Но истину от­носительно того, что находится за пределами этих границ, они ищут где-то ещё, и все они ищут источник первичной мотивации. Для рели­гиозных людей роль такого источника может сыграть божественное откровение. Солипсисты доверяют только непосредственному опыту своих собственных мыслей, как это выражено в классическом аргу­менте Рене Декарта cogito ergo sum («мыслю, следовательно, сущест­вую»).  {85} 

Несмотря на стремление строить свою философию на этой предпо­ложительно твердой основе, в действительности, Декарт позволял себе делать много других допущений и определенно не был солипсистом. На самом деле в истории было очень мало истинных солипсистов, если та­ковые вообще были. Солипсизм обычно защищали лишь как средство нападок на научное рассуждение или как средство к получению од­ного из многих его вариантов. По тому же принципу хороший способ защитить науку от всевозможной критики и понять истинную связь между разумом и реальностью — это рассмотреть аргументы против солипсизма.

Есть стандартная философская шутка о профессоре, читающем лекцию в защиту солипсизма. Лекция настолько убедительна, что как только она заканчивается, несколько студентов спешат пожать руку профессора. «Великолепно. Я согласен с каждым словом», — искренне признается один студент. — «Я тоже», — говорит другой. «Мне очень приятно это слышать, — говорит профессор. — Так редко представля­ется возможность встретить собратьев-солипсистов».

В этой шутке неявно присутствует веский аргумент против со­липсизма. Его можно сформулировать следующим образом. В чем же конкретно заключалась теория, с которой соглашались эти студенты? Была ли это теория профессора о том, что студентов не существует, по­тому что существует только профессор? Чтобы в это поверить, прежде всего, им необходимо было каким-то образом обойти аргумент Декарта cogito ergo sum. И если бы у них это получилось, они уже не были бы солипсистами, поскольку основное положение солипсизма заключается в том, что солипсист существует. Или каждый студент был убежден в теории, противоречащей теории профессора, теории о том, что су­ществует конкретный студент, но нет ни профессора, ни других сту­дентов? Это на самом деле сделало бы их всех солипсистами, но ни один из студентов не согласился бы с теорией, которую предлагал профес­сор. Следовательно, ни один из этих возможных вариантов не означает, что защита солипсизма профессором убедила студентов. Если они со­гласятся с мнением профессора, они не будут солипсистами, а если они станут солипсистами, они убедятся в том, что профессор ошибается.

Этот аргумент нацелен на то, чтобы показать, что солипсизм невоз­можно защитить буквально, потому что, соглашаясь с подобной защи­той, человек неявно противоречит ей. Но наш профессор-солипсист мог попытаться избежать этого аргумента, сказав что-то вроде: «Я могу  {86}  защитить солипсизм и неизменно делаю это. Я защищаю его не от других людей, поскольку других людей не существует, но от противополож­ных аргументов. Эти аргументы попадают в поле моего внимания от людей из сна, которые ведут себя как мыслящие существа, часто про­тивопоставляющие свои мысли моим. Моя лекция и аргументы, в ней содержащиеся, направлены не на то, чтобы убедить этих людей из сна, а на то, чтобы убедить себя — помочь себе прояснить свои мысли».

Однако, если существуют источники мыслей, которые ведут се­бя, как если бы они были независимы от кого-либо, то они непременно являются независимыми от кого-либо. Если я определяю «себя» как сознательную сущность, обладающую мыслями и чувствами, наличие которых я осознаю, то «люди из сна», с которыми я, по-видимому, вза­имодействую, по определению — нечто отличное от узко определен­ного «меня», а потому я должен допускать, что кроме меня существу­ет что-то ещё. Если бы я был ярым солипсистом, у меня остался бы единственный выход: считать людей из сна созданиями моего подсо­знательного разума и, следовательно, частью «меня» в более свободном смысле. Но тогда я вынужден был бы допустить, что у «меня» очень мо­гущественная структура, бóльшая часть которой не зависит от моего сознательного «я». В рамках этой структуры присутствуют некоторые сущности — люди из сна, — которые, несмотря на то, что являются всего лишь составляющими разума предполагаемого солипсиста, ведут себя словно ярые антисолипсисты. Я не мог бы назвать себя солипсис­том целиком и полностью, поскольку этого взгляда придерживалась бы только узко определенная часть меня. Множество, по-видимому, боль­шинство мнений, находящихся в пределах моего разума, в целом про­тивостояли бы солипсизму. Я мог бы изучить «наружную» часть себя и обнаружить, что она, по-видимому, подчиняется определенным зако­нам, тем же законам, которые, по словам учебников из сна, применимы к тому, что они называют физической вселенной. Я обнаружил бы, что внешняя часть гораздо больше внутренней. Помимо того, что она со­держит больше мыслей, она также более сложна, более разнообразна и обладает буквально в астрономическое число раз бóльшим количеством измеримых переменных по сравнению с внутренней областью.

Более того, эта наружная часть поддается научному изучению с по­мощью методов Галилео. Поскольку я вынужден теперь определить эту область как часть себя, солипсизм уже не имеет аргумента против об­основанности такого изучения, которое теперь определяется просто как  {87}  форма самоанализа. Солипсизм допускает, а в действительности, при­нимает, что знание о самом себе можно получить посредством само­анализа. Он не может объявить, что изучаемые сущности и процессы нереальны, поскольку реальность самого себя — его основной постулат.

Таким образом, мы видим, что если воспринять солипсизм всерьез — если принять, что это истина и что все обоснованные объяснения должны ему в точности соответствовать, — он разрушит сам себя. Чем же солипсизм, если принять его всерьез, отличается от своего разум­ного соперника реализма? Всего лишь схемой переименования. Солип­сизм настаивает на том, чтобы называть объективно различные вещи (например, внешнюю реальность и мой подсознательный разум или са­моанализ и научное наблюдение) одинаковыми именами. Но затем ему приходится показывать, чем отличаются эти категории, посредством объяснений на основе чего-то вроде «наружной части себя». Но такие дополнительные объяснения не понадобились бы, если бы он не наста­ивал на необъяснимом переименовании. Кроме того, солипсизм мог бы постулировать существование ещё одного класса процессов: неви­димых, необъяснимых процессов, которые дают разуму иллюзию жиз­ни во внешней реальности. Солипсист, уверенный, что не существует ничего, кроме содержимого его разума, также должен верить, что этот разум — явление гораздо более многообразное, чем это обычно считает­ся: он содержит мысли, подобные мыслям других людей, мысли о свой­ствах планет, мысли, подобные законам физики. Эти мысли реальны. Они развиваются сложным образом (или делают вид, что развивают­ся), и они достаточно независимы, чтобы удивлять, разочаровывать, просвещать или противоречить тому классу мыслей, которые называ­ют себя «я». Таким образом, солипсистское объяснение мира основано скорее на взаимодействии мыслей, чем на взаимодействии предметов. Но эти мысли реальны и взаимодействуют в соответствии с теми же законами, которые, по словам реалиста, управляют взаимодействием предметов. Таким образом, солипсизм, далекий от того, чтобы стать мировоззрением, разложенным на основные элементы, — это реализм, искаженный и отягощенный дополнительными излишними допущения­ми, — никчемным багажом, который используют только в целях оправ­дания.

Этот аргумент дает нам возможность обойтись без солипсизма и всех родственных ему теорий, которые невозможно защитить. Между прочим, на этой основе мы уже отвергли одно из мировоззрений,  {88}  позитивизм (теорию о том, что бессмысленны все утверждения, кроме тех, которые описывают или предсказывают наблюдения). Как я заметил в главе 1, позитивизм провозглашает свою собственную бессмыслен­ность, и, следовательно, его невозможно стойко защищать.

А потому мы, успокоившись, можем продолжать придерживаться разумного реализма и искать объяснения с помощью научных методов. Однако в свете этого вывода, что мы можем сказать об аргументах, сде­лавших солипсизм и родственные ему теории на первый взгляд правдо­подобными, то есть такими, что невозможно ни доказать их ложность, ни исключить их после проведения эксперимента? Каков статус этих аргументов в настоящий момент? Если мы так и не доказали, что со­липсизм ложен, и не исключили его с помощью эксперимента, что же мы сделали?

Этот вопрос содержит в себе допущение относительно того, что те­ории можно расположить в виде иерархии: «математические» ® «науч­ные» ® «философские», — в зависимости от уменьшения свойственной им надежности. Многие люди воспринимают существование такой ие­рархии как должное, несмотря на то, что суждения о сравнительной на­дежности полностью зависят от философских аргументов, аргументов, которые сами себя классифицируют как весьма ненадежные! В дейст­вительности, мысль об этой иерархии сродни ошибке редукционистов, о которой я рассказывал в главе 1 (теории о том, что микроскопические законы и явления более фундаментальны, чем исходящие). То же допу­щение присутствует в индуктивизме, который полагает, что мы можем быть абсолютно уверены в выводах математических доказательств, по­тому что они дедуктивны, в разумных пределах уверены в научных до­казательствах, потому что они «индуктивны» и испытывать вечную не­решительность относительно философских доказательств, которые ин­дуктивизм считает почти делом вкуса.

Но ни одно из этих утверждений не соответствует истине. Объ­яснения не доказывают средства, с помощью которых они были по­лучены; их доказывает их лучшая, по сравнению с конкурирующими объяснениями, способность решать задачи, которым они адресованы. Именно поэтому таким непреодолимым может быть аргумент, связан­ный с тем, что теорию невозможно защитить. Предсказание или любое допущение, которое невозможно защитить, тем не менее, может оста­ваться истинным, но объяснение, которое невозможно защитить, — это не объяснение. Отказ от «простых» объяснений на основе их недоказан­ности  {89}  каким-то первичным объяснением неизбежно толкает человека к тщетным поискам первичного источника доказательства. А такового не существует.

Не существует и иерархии надежности от математических аргу­ментов к научным и философским. Некоторые философские доказа­тельства, включая доказательство ложности солипсизма, гораздо бо­лее неопровержимы, чем научные. В действительности, каждое науч­ное доказательство принимает ложность не только солипсизма, но и других философских теорий, включая любое количество вариантов со­липсизма, которые могли бы противоречить особым частям научного доказательства. Я также покажу (в главе 10), что даже чисто матема­тические доказательства получают свою надежность из физических и философских теорий, поддерживающих их, и, следовательно, не могут обеспечить абсолютную определенность.

Приняв реализм, мы постоянно сталкиваемся с принятием реше­ний относительно реальности категорий, на которые ссылаемся при конкурирующих объяснениях. Принять решение об их нереальности (как мы сделали это в случае с «ангельской» теорией движения пла­нет) — все равно, что отвергнуть соответствующие объяснения. Та­ким образом, при поиске и сравнении объяснений нам нужно нечто большее, чем опровержение солипсизма. Нам нужно найти причины принятия или отвержения факта существования тех категорий, ко­торые могут появиться в конкурирующих теориях; другими слова­ми, нам необходим критерий реальности. Безусловно, нельзя ожидать, что мы найдем конечный или безошибочный критерий. Наши суж­дения о том, что реально, а что — нет, всегда зависят от различ­ных объяснений, которые нам доступны и иногда меняются по мере того, как наши объяснения становятся более совершенными. В девят­надцатом веке мало что с большей уверенностью посчитали бы ре­альнее силы тяготения. Она не только фигурировала в системе зако­нов Ньютона, которая в то время не имела конкурентов, её мог по­чувствовать каждый, постоянно, даже с закрытыми глазами — или так всем казалось. Сегодня мы понимаем тяготение не через теорию Ньютона, а через теорию Эйнштейна, и мы знаем, что такой силы не существует. Мы её не чувствуем! Мы просто чувствуем сопротивле­ние, которое препятствует нашему проникновению в землю под на­шими ногами. Ничто не тянет нас вниз. Единственная причина, по­чему мы падаем, когда теряем опору, заключается в том, что структура  {90}  пространства и времени, в которой мы существуем, искривле­на.

Изменяются не только объяснения, постепенно изменяются (стано­вятся более совершенными) наши критерии и представление о том, что должно считаться объяснением. Таким образом, список приемлемых способов объяснения всегда будет оставаться открытым сверху, а по­тому и список приемлемых критериев реальности должен оставаться таким же. Но что же присутствует в объяснении, — если по каким-то причинам мы считаем его удовлетворительным, — что должно за­ставить нас классифицировать одни вещи как реальные, а другие как иллюзорные или воображаемые?

Джеймс Босуэлл в своей книге «Johnson's Life»[6] рассказывает, как он и доктор Джонсон обсуждали солипсистскую теорию епископа Берк­ли о несуществовании материального мира. Босуэлл заметил, что, хотя никто не верит в эту теорию, никто всё же не может её опровергнуть. Доктор Джонсон пнул большой камень и, почувствовав отдачу в ноге, сказал: «Я опровергаю её вот так». Он имел в виду, что отрицание существования камня Беркли несовместимо с обнаруженным им объ­яснением в виде отдачи, которую он почувствовал сам. Солипсизм не в состоянии дать ни одного объяснения того, почему этот или любой другой эксперимент имеет именно такой результат. Чтобы объяснить то воздействие, которое оказал на него камень, доктор Джонсон был вынужден сформировать какую-либо точку зрения относительно при­роды камней. Были ли они частью независимой внешней реальности или плодом его воображения? В последнем случае ему пришлось бы сде­лать вывод, что «его воображение» само по себе — громадная, сложная, автономная вселенная. Та же дилемма возникла бы перед профессором-солипсистом, который, если бы стремился к объяснениям, вынужден был бы сформировать свою точку зрения относительно природы слу­шателей. И Инквизиции пришлось бы принять точку зрения источника закономерности, лежащей в основе движения планет, закономерности, которую можно объяснить, только ссылаясь на гелиоцентрическую тео­рию. Принятие своей собственной позиции в качестве объяснения мира привело бы всех этих людей непосредственно к реализму и рационализ­му Галилео. Но идея доктора Джонсона — это нечто большее, чем опро­вержение солипсизма. Она также показывает критерий реальности,  {91}  используемый в науке, а именно: если что-то может оказать ответное воздействие, значит оно существует. «Оказать ответное воздействие» в данном случае не обязательно означает, что так называемый объект реагирует на то, что его пнули — что на него оказали физическое воз­действие, как на камень доктора Джонсона. Достаточно того, что, когда мы «пинаем» что-то, этот объект воздействует на нас способами, кото­рые требуют независимого объяснения. Например, у Галилео не было средств воздействия на планеты, но он мог воздействовать на свет, ис­ходящий от них. Его эквивалентом пинания камня было преломление этого света через линзы телескопов и глаза. Этот свет реагировал, «воз­действуя» на сетчатку его глаз. И это ответное воздействие позволило ему сделать вывод не только о реальности света, но и о реальности ге­лиоцентрического движения планет, необходимого для объяснения кар­тин падающего света.

Кстати, доктор Джонсон тоже непосредственно не пинал камня. Че­ловек — это разум, а не тело. Доктор Джонсон, который провел этот эксперимент, был разумом, и этот разум непосредственно «воздейст­вовал» всего лишь на несколько нервов, которые передали сигнал мус­кулам, подтолкнувшим его ногу к камню. Вскоре после этого доктор Джонсон ощутил, что камень «оказал ответное воздействие», но опять лишь косвенно, после того, как удар создал давление в его ботинке, по­том в его коже, а потом привел к появлению электрических импульсов в его нервах и так далее. Разум доктора Джонсона, как и разум Галилео и разум любого другого человека, «воздействовал» на нервы, «получал от них ответное воздействие» и делал вывод о существовании и свойст­вах реальности, основываясь на одних взаимодействиях. Какой вывод относительно реальности имел право сделать доктор Джонсон, зависит от того, какое наилучшее объяснение он мог дать происшедшему. На­пример, если бы ему показалось, что ощущение зависит только от рас­тяжения ноги, а не от внешних факторов, то он, возможно, счел бы это свойством своей ноги или только своего разума. Возможно, он страдал от болезни, которая проявлялась в ощущении отдачи, когда бы он ни протягивал ногу определенным образом. Но в действительности отдача зависела от того, что делал камень: например, находился в определен­ном месте, что, в свою очередь, было связано с другими действиями, производимыми камнем, например, он был видим или воздействовал на людей, которые его пинали. Доктор Джонсон ощущал, что эти действия автономны (независимы от него) и достаточно сложны. Следовательно,  {92}  объяснение реалистов, почему камень дает ощущение отдачи, вклю­чает в себя сложную историю о чем-то автономном. Но и объяснение солипсистов делает то же самое. В действительности, любое объяснение явления отдачи ноги — обязательно «сложная история о чем-то авто­номном». В сущности оно должно бы стать историей камня. Солипсист назвал бы его камнем из сна, но, не считая этого названия, истории солипсиста и реалиста имели бы один и тот же сценарий.

Мой рассказ о тенях и параллельных вселенных в главе 2 был свя­зан с вопросом о том, что существует, а что нет; и неявно с тем, что считать доказательством существования, а что нет. Я воспользовался критерием доктора Джонсона. Вернемся к точке Х на экране, изобра­женном на рисунке 2.7 (с. 46). Эта точка освещена только при двух открытых щелях, но становится темной, когда открывают ещё две ще­ли. Я сказал, что «неизбежен» вывод о том, что через вторую пару щелей должно проходить что-то, что мешает свету, проходящему через пер­вую пару щелей, достигнуть точки X. Такой вывод логически нельзя назвать неизбежным, поскольку если бы мы не искали объяснений, мы просто могли бы сказать, что фотоны, которые мы видим, ведут се­бя так, словно нечто, проходящее через вторую пару щелей, отклонило траекторию их движения, но на самом деле этого нечто там нет. Точно так же доктор Джонсон мог сказать, что он почувствовал отдачу в ноге, словно там побывал камень, но на самом деле там ничего не было. Инк­визиция утверждала, что только кажется, что планеты движутся так, словно и они, и Земля находятся на орбите вокруг Солнца, но на самом деле они движутся вокруг неподвижной Земли. Но если наша цель — объяснить движение планет или движение фотонов, то мы должны сде­лать то же самое, что сделал доктор Джонсон. Мы должны принять методологическое правило, что если что-то ведет себя так, словно оно существует, оказывая ответное воздействие, то это воздействие сле­дует рассматривать как доказательство существования этого объекта. Теневые фотоны оказывают ответное воздействие на реальные фотоны, а, значит, теневые фотоны существуют.

Можем ли мы подобным образом сделать вывод из критерия док­тора Джонсона, что «планеты движутся так, словно их толкают ангелы, а, следовательно, ангелы существуют»? Нет, но только потому, что у нас есть объяснение лучше. Нельзя сказать, что ангельская теория дви­жения планет полностью лишена достоинств. Она объясняет, почему планеты движутся независимо от небесной сферы, и это действительно  {93}  поднимает её над солипсизмом. Но она не объясняет, почему ангелы толкают планеты по данному набору орбит, а не по какому-то другому, или, в частности, почему они толкают планеты, словно их движение определяется кривизной пространства и времени, универсальными за­конами теории относительности. Вот почему теория ангелов как объ­яснение не может конкурировать с теориями современной физики.

Точно так же постулировать, что ангелы проходят через вторую пару щелей и отклоняют наши фотоны, будет лучше, чем ничего. Но мы можем сделать ещё лучше. Мы точно знаем, как эти ангелы долж­ны вести себя: совсем как фотоны. Таким образом, у нас есть выбор между объяснением, основанным на невидимых ангелах, притворяю­щихся фотонами, и объяснением, основанным на невидимых фотонах. При отсутствии независимого объяснения, почему ангелы должны при­творяться фотонами, последнее объяснение считаем лучше первого.

Мы не чувствуем присутствия своих двойников в других вселен­ных. Точно так же инквизиторы не чувствовали, что Земля под их нога­ми вертится. И всё-таки она вертится! Теперь рассмотрим, что бы мы чувствовали, если бы существовали во множестве копий, взаимодейст­вуя только через незаметные слабые воздействия квантовой интерфе­ренции. Это эквивалентно тому, что делал Галилео, когда анализировал, как бы мы почувствовали Землю, если бы она двигалась в соответствии с гелиоцентрической теорией. Он открыл, что движение было бы не­ощутимо. Но, возможно, слово «неощутимо» в данном случае не совсем уместно. Ни движение Земли, ни присутствие параллельных вселен­ных невозможно ощутить непосредственно, но тогда нельзя ощутить ничего (кроме, пожалуй, своего собственного пустого существования, если справедлив аргумент Декарта). Но и то и другое можно ощутить в том смысле, что они ощутимо «оказывают ответное воздействие» на нас, если мы изучаем их с помощью научных инструментов. Мы можем видеть, как маятник Фуко раскачивается в плоскости, которая посте­пенно поворачивается, показывая этим вращение Земли, которая под ней находится. Мы можем обнаружить фотоны, которые отклонились из-за интерференции со своими двойниками из другой вселенной. И то, что чувства, с которыми мы родились, не приспособлены ощущать все это «непосредственно», — всего лишь случайность, которая произошла в результате эволюции.

Неоспоримой теорию существования делает не сила ответной ре­акции чего бы то ни было. Важна роль такой теории в объяснениях.  {94}  Я уже приводил примеры из физики, когда совсем крошечная «ответная реакция» приводила нас к грандиозным выводам относительно реаль­ности, потому что других объяснений у нас не было. Может произойти и обратное: если среди конкурирующих объяснений нет определенно­го победителя, то даже очень сильная «ответная реакция» может не убедить нас в том, что предполагаемый источник имеет независимую реальность. Например, однажды вы можете увидеть, что на вас напали ужасные чудовища — а потом вы проснетесь. Даже если объяснение, которое они породили в вашем разуме, кажется адекватным, все равно нерационально делать вывод о существовании таких чудовищ в физи­ческом мире. Если идя по оживленной улице, вы почувствовали внезап­ную боль в плече, и оглянувшись, не обнаружили ничего, что объяснило бы эту боль, вы, возможно, захотели бы узнать, была ли боль вызвана подсознательной частью вашего разума, вашим телом или чем-то из­вне. Вы могли счесть возможным, что какой-то спрятавшийся шутник выстрелил в вас из пневматического ружья, но вы не могли сделать вывод о реальном существовании этого человека. Но если бы вы уви­дели катящуюся по тротуару дробинку от пневматического ружья, вы могли бы заключить, что ни одно объяснение не решает задачу луч­ше, чем объяснение с пневматическим ружьем, и в этом случае вы бы приняли это объяснение. Другими словами, предварительно вы выска­зали бы догадку о существовании человека, которого не видели и не могли видеть из-за его роли в наилучшем (из имеющихся у вас) объ­яснении. Ясно, что теория существования такого человека не является логическим следствием результата наблюдений (в качестве которого в данном случае выступает отдельное наблюдение). Кроме того, эта те­ория не принимает форму «индуктивного обобщения», например, если вы проведете тот же самый эксперимент, вы можете получить дру­гой результат. Эту теорию также нельзя проверить экспериментально: эксперимент не может доказать отсутствие спрятавшегося шутника. Несмотря на все это, аргумент в пользу этой теории мог бы быть чрез­вычайно убедительным, если бы представлял собой лучшее объяснение.

Всякий раз, когда я пользовался критерием доктора Джонсона для приведения доводов в защиту реальности чего-либо, особенно важным всегда оказывалось одно свойство — сложность. Мы предпочитаем простые объяснения сложным. Кроме того, мы предпочитаем объяс­нения, которые способны учесть детали и сложность, объяснениям, ко­торые могут учесть только простые аспекты явлений. В соответствии  {95}  с критерием доктора Джонсона следует считать реальными те сложные категории, которые, если мы не сочтем их реальными, усложнят наши объяснения. Например, мы должны считать реальными планеты, по­тому что в противном случае мы будем вынуждены принять сложные объяснения о космическом планетарии, об измененных законах физи­ки, об ангелах или о чем-то ещё, что при этом допущении давало бы нам иллюзию того, что в космическом пространстве есть планеты.

Таким образом, наблюдаемая сложность структуры или поведения какого-либо объекта — это часть доказательства реальности этого объ­екта. Но это не достаточное доказательство. Мы, например, не считаем свои отражения в зеркале реальными людьми. Безусловно, сами иллю­зии — это реальные физические процессы. Но иллюзорные объекты которые они нам показывают, не нужно считать реальными, потому что их сложность проистекает из чего-то ещё. Их сложность не являет­ся автономной. Почему мы принимаем «зеркальную» теорию отраже­ний, но отвергаем теорию Солнечной системы «как планетария»? Пото­му что, имея простое объяснение действия зеркал, мы можем понять, что ничего из того, что мы видим в них, в действительности за ними не находится. В дальнейших объяснениях нет необходимости, потому что отражения, несмотря на всю свою сложность, не являются автономны­ми — всю свою сложность они просто переняли с нашей стороны зер­кала. С планетами все обстоит иначе. Теория о том, что космический планетарий реален и что за ним ничего нет, только усугубляет задачу. Поскольку, приняв эту теорию, вместо того чтобы просто узнать прин­цип действия Солнечной системы, нам сначала пришлось бы спросить о принципе действия планетария и только потом о принципе дейст­вия Солнечной системы, которую этот планетарий представляет. Мы не смогли бы избежать последнего вопроса, повторяющего тот вопрос на который мы пытались ответить в первую очередь. Теперь мы можем перефразировать критерий доктора Джонсона следующим образом:

Если, в соответствии с простейшим объяснением, какая-либо кате­гория является сложной и автономной, значит, эта категория реальна.

Теория сложности вычислений — это отрасль теории вычисли­тельных систем, которая связана с тем, какие ресурсы (как-то: время, объем памяти или энергия) необходимы для выполнения данных клас­сов вычислений. Сложность отрезка информации определяется на ос­нове вычислительных ресурсов (как-то: длина программы, количество  {96}  вычислительных этапов или объем памяти), которые понадобились бы компьютеру для воспроизведения этого отрезка информации. Исполь­зуют несколько различных определений сложности, каждое из кото­рых имеет свою область применения. В данном случае нас не волнуют точные определения, но все они основаны на идее о том, что слож­ный процесс — это процесс, который в действительности представляет нам результаты обширного вычисления. Планетарий хорошо иллюстри­рует смысл, в котором движение планет «представляет нам результа­ты обширного вычисления». Предположим, что планетарием управляет компьютер, вычисляющий точное изображение того, что прожекторы должны представить в качестве изображения ночного неба. Чтобы сде­лать это достоверно, компьютер должен использовать формулы, пре­доставленные астрономическими теориями. В действительности такое вычисление идентично тому, которое осуществили бы при определении предсказаний, куда обсерватории следует направить свои телескопы, чтобы увидеть реальные планеты и звезды. Говоря, что внешний вид планетария так же «сложен», как и вид ночного неба, которое он пред­ставляет, мы имеем в виду, что оба этих вычислительных процесса, — один из которых описывает ночное небо, а второй — модель Солнечной системы, — весьма идентичны. Таким образом, мы опять можем пере­формулировать критерий доктора Джонсона на основе гипотетических вычислений:

Если для обретения иллюзии того, что определенная категория ре­альна, потребуется значительное количество вычислений, то эта кате­гория реальна.

Если бы в ноге доктора Джонса всякий раз, когда он её вытягивал, появлялась отдача, то источнику его иллюзий (Богу, машине виртуаль­ной реальности или чему-то еще) пришлось бы проделать всего лишь простое вычисление, чтобы определить, когда давать ему ощущение отдачи (что-то вроде «ЕСЛИ нога вытянута, ТО отдача...»). Но чтобы воспроизвести то, что испытал доктор Джонсон, в практическом экс­перименте, необходимо принять во внимание, где находится камень, попадет ли по нему нога доктора Джонсона, насколько он тяжел, тверд и прочно ли вдавлен в землю, пинал ли его кто-то до доктора Джонсона и т. д. — огромное вычисление.

Физики, склонные к мировоззрению, подразумевающему сущест­вование одной вселенной, иногда пытаются объяснить явление кванто­вой  {97}  интерференции следующим образом: «Теневых фотонов не сущест­вует, — говорят они, — а то, что переносит влияние отдаленных щелей на реальный фотон, — ничто. Некое действие на расстоянии (как в за­коне тяготения Ньютона) просто заставляет фотоны изменять траек­торию, когда открывают отдаленную щель». Но в этом предполагаемом действии на расстоянии нет ничего «простого». Соответствующий фи­зический закон не может не сказать, что отдаленные объекты воздей­ствуют на фотон так, словно что-то проходит через отдаленные щели и отскакивает от отдаленных зеркал так, чтобы остановить этот фотон в нужное время в нужном месте. Для определения реакции фотона на эти отдаленные объекты потребовался бы тот же объем вычислений, что и для создания истории о большом количестве теневых фотонов. Вычислению пришлось бы пройти через всю историю поведения каж­дого фотона: он отскакивает от этого, его останавливает то и т. д. Сле­довательно, как и в случае с камнем доктора Джонсона и с планетами Галилео, история о теневых фотонах обязательно появляется в любом объяснении наблюдаемых результатов. Минимальная сложность этой истории делает отрицание существования этих объектов неприемле­мым с философской точки зрения.

Физик Дэвид Бом создал теорию с предсказаниями, идентичными предсказаниям квантовой теории, в которой некая волна сопровожда­ет каждый фотон, переливается через всю перегородку, проходит че­рез щели и препятствует движению видимого фотона. Теорию Бома часто представляют как вариант квантовой теории, основанный на су­ществовании одной вселенной. Но эта теория ошибочна в соответствии с критерием доктора Джонсона. Отработка поведения невидимой волны Бома потребует тех же вычислений, что и отработка поведения трил­лионов теневых фотонов. Некоторые части волны описывают нас, на­блюдателей, обнаруживающих фотоны и реагирующих на них; другие части волны описывают другие варианты нас, реагирующих на фото­ны в других положениях. Скромная терминология Бома — отношение к бóльшей части реальности как к волне — не меняет того факта, что в его теории реальность состоит из огромного набора сложных катего­рий, каждая из которых способна ощущать другие категории из своего набора, но категории из остальных наборов она может ощущать только косвенно.

Я описал новую концепцию Галилео нашей связи с внешней реаль­ностью как великое методологическое открытие. Это открытие  {98}  предоставило нам новую надежную форму рассуждения, содержащего ре­зультаты наблюдений. Один из аспектов его открытия действитель­но заключается в следующем: научное рассуждение надежно не в том смысле, что оно удостоверяет, что любая конкретная теория останется неизменной до будущих времен, а в том смысле, что мы правы, когда полагаемся на него. Ибо мы правы, когда ищем решения задач, а не источники первичного доказательства. Результаты наблюдений — это действительно свидетельства, но не в том смысле, что из них с помо­щью дедукции, индукции или любого другого метода можно вывести любую теорию, а в том смысле, что они могут стать истинной причи­ной предпочтения одной теории другой.

Но у открытия Галилео есть другая сторона, про которую чаще всего забывают. Надежность научного рассуждения — это не только качество нас: нашего знания и наших взаимоотношений с реальностью. Это также и новый факт о самой физической реальности, факт, кото­рый Галилео выразил фразой: «Книга Природы написана математичес­кими символами». Как я уже сказал, буквально в природе невозможно «прочитать» и частицы теории: это ошибка индуктивизма. Но там есть нечто другое: свидетельства, или, выражаясь более точно, реальность, которая предоставляет нам эти свидетельства, если мы взаимодейст­вуем с ней должным образом. Если нам дана крупица теории или даже крупицы нескольких конкурирующих теорий, мы можем использовать результаты наблюдений, чтобы сделать выбор. При желании любой че­ловек может искать такие свидетельства, находить их и совершенство­вать. Для этого не нужно ни полномочий, ни посвящения, ни священных текстов. Единственное, что нужно, — смотреть в нужном направлении, не забывая про плодородные задачи и обещающие теории. Эта открытая доступность не только свидетельств, но и всего механизма обретения знания, — ключевое свойство концепции реальности Галилео.

Возможно, Галилео считал это само собой разумеющимся, но это не так. Это независимое допущение о том, какова физическая реальность. Логически реальности не нужно этого свойства, помогающего науке, но оно у неё присутствует — и присутствует в изобилии. Вселенная Гали­лео насыщена свидетельствами. Коперник собрал свидетельства своей гелиоцентрической теории в Польше. Тихо Браге собрал свои свиде­тельства в Дании, а Кеплер — в Германии. Направив свой телескоп в небо над Италией, Галилео получил больший доступ к тем же свиде­тельствам. Каждый кусочек поверхности Земли в каждую ясную ночь  {99}  в течение миллиардов лет утопал в свидетельствах фактов и законов астрономии. Для множества других наук свидетельства тоже были на поверхности, но увидеть их стало возможно только в современности с помощью микроскопов и других приборов. Там, где свидетельств фи­зически ещё нет, мы можем создать их с помощью таких приборов, как лазеры и перегородки с отверстиями — приборов, которые может построить каждый где угодно и в любое время. И свидетельства будут одни и те же, независимо от того, кто их обнаружит. Чем более фунда­ментальна теория, тем доступнее её свидетельства (для тех, кто знает, как смотреть) не только на Земле, но и во всем мультиверсе.

Таким образом, физическая реальность самоподобна на несколь­ких уровнях: несмотря на колоссальную сложность вселенной и муль­тиверса, некоторые картины бесконечно повторяются. Земля и Юпи­тер — весьма непохожие планеты, но они движутся по орбите и состо­ят из одинакового набора примерно ста химических элементов (правда, в различных пропорциях). То же самое относится и к их двойникам из параллельных вселенных. Свидетельства, которые произвели столь сильное впечатление на Галилео и его современников, также сущест­вуют на других планетах и в отдаленных галактиках. Свидетельства, которые сейчас изучают физики и астрономы, были доступны мил­лиард лет назад и будут доступны ещё через миллиард лет. Само су­ществование общих объяснительных теорий означает, что несравнимые объекты и события некоторым образом физически схожи. Свет, попа­дающий к нам из отдаленных галактик, — это всего лишь свет, но нам он кажется галактиками. Таким образом, реальность содержит не только свидетельства, но и средства (например, наш разум и продукты нашей жизнедеятельности) её понимания. В физической реальности су­ществуют математические символы. И то, что именно мы помещаем их туда, не умаляет их физическую суть. В этих символах — в наших планетариях, книгах, фильмах, в памяти наших компьютеров и в нашем мозге — существуют образы физической реальности в целом, образы не только внешнего вида объектов, но и структуры реальности. Сущест­вуют законы и объяснения, редукционные и исходящие. Существуют описания и объяснения Большого Взрыва и субъядерных частиц и про­цессов; существуют математические абстракции; домыслы; искусство; этика; теневые фотоны и параллельные вселенные. Степень истинности всех этих символов, образов и теорий, — то есть определенное сходст­во с конкретными или абстрактными вещами, к которым они относятся,  {100}  — определяет новую самоподобность, которую дает реальности их существование. Эту самоподобность мы называем знанием.

ТЕРМИНОЛОГИЯ

Гелиоцентрическая теория — теория о том, что Земля движет­ся вокруг Солнца и вращается вокруг своей собственной оси.

Геоцентрическая теория — теория о том, что Земля неподвиж­на, а все остальные небесные тела движутся вокруг неё.

Реализм — теория о том, что внешняя физическая вселенная объ­ективно существует и воздействует на нас через наши чувства.

Бритва Оккама (моя формулировка) — не усложняйте объясне­ния, если в этом нет необходимости, потому что в противном случае излишние усложнения останутся необъясненными.

Критерий доктора Джонсона (моя формулировка) — если что-либо дает ответную реакцию, значит, оно существует. Уточненный вариант: если в соответствии с простейшим объяснением какая-либо категория является сложной и автономной, значит, эта категория ре­альна.

Самоподобность — некоторые части физической реальности (на­пример, символы, картины или человеческие мысли) похожи на другие её части. Сходство может быть конкретным, когда образы в планета­рии похожи на ночное небо; но важнее то, что это сходство может быть абстрактным, когда некое положение квантовой теории, напечатанное в книге, правильно объясняет один из аспектов структуры мультивер­са. (Возможно, некоторые читатели знакомы с фрактальной геометри­ей; понятие самоподобности, определенное здесь, гораздо шире понятия, используемого в этой области).

Теория сложности — раздел теории вычислительных систем, за­нимающийся ресурсами (такими, как время, объем памяти или энер­гия), которые необходимы для выполнения данных классов вычислений.

РЕЗЮМЕ

Несмотря на то, что солипсизм и родственные ему доктрины ло­гически самосогласованны, их можно полностью опровергнуть, просто воспринимая как серьезные объяснения. Хотя все они претендуют на  {101}  звание упрощенного мировоззрения, такой анализ показывает, что они не более чем чрезмерно усложненные формы реализма, которые невоз­можно защитить. Реальные категории ведут себя сложным и автоном­ным образом, который можно принять как критерий реальности: если что-либо «дает ответную реакцию», оно существует. Научное рассуж­дение, использующее наблюдение не как основу экстраполяции, а как средство поиска отличий в объяснениях, не уступающих друг другу по остальным параметрам, может дать нам истинное знание о реальности.


Таким образом, особое свойство самоподобности физического ми­ра делает возможной науку и другие формы знания. Однако впервые это свойство признали и изучили вовсе не физики, а математики и теоретики в области вычислительной техники. Они назвали это свой­ство универсальностью вычислений. Теория вычислений — наше третье основное направление.  {102} 




ГЛАВА 5

Виртуальная реальность

Теорию вычислений традиционно изучали абстрактно, как раздел, относящийся только к математике. Однако при этом теряется её смысл. Компьютеры — физические объекты, а вычисления — физические про­цессы. То, что могут или не могут вычислить компьютеры, опреде­ляется законами физики, а не законами чистой математики. Универ­сальность — одна из важнейших концепций теории вычислений. Уни­версальный компьютер обычно определяют как абстрактную машину, способную имитировать вычисления любой другой абстрактной маши­ны в конкретном четко определенном классе. Однако важность универ­сальности заключается в том, что универсальные компьютеры, или, по крайней мере, хорошие приближения к ним, можно на самом деле построить и использовать для вычисления поведения не только друг друга, но и интересующих физических и абстрактных категорий. Эта возможность — часть самоподобности физической реальности, о кото­рой я упомянул в предыдущей главе.

Самое известное физическое проявление универсальности — об­ласть технологии, которая обсуждалась в течение многих десятилетий, но начинает развиваться только сейчас, — виртуальная реальность. Этот термин относится к любой ситуации, когда искусственно созда­ется ощущение пребывания человека в определенной среде. Например, пилотажный тренажер — машина, которая дает летчику ощущение по­лета на самолете без отрыва от земли, — это один из видов генератора виртуальной реальности. В такую машину (или точнее, компьютер, ко­торый ею управляет) можно ввести характеристики реального или вы­мышленного самолета. В программе также можно определить окружа­ющую самолет среду, как-то: погоду и схему аэропортов. По мере того, как пилот практикует перелеты из одного аэропорта в другой, тренажер вызывает определенные изображения в окнах, ощущения возникающих при полете толчков и ускорений, соответствующие показания прибо­ров и т. д. Он может включать эффекты, например, турбулентности,  {103}  механического повреждения и предложенных модификаций самолета. Таким образом, пилотажный тренажер может дать пользователю широ­кий диапазон ощущений от полета, включая такие ощущения, которые невозможно получить в реальном самолете: имитационный самолет мо­жет обладать техническими характеристиками, нарушающими законы физики, например, он может лететь сквозь горы, быстрее света или без горючего.

Поскольку мы ощущаем окружающую нас среду через наши чувст­ва, любой генератор виртуальной реальности должен обладать способ­ностью манипулировать нашими чувствами, доминируя над их нор­мальным функционированием, чтобы мы могли почувствовать опреде­ленную окружающую среду. Возможно, это звучит как выкладка из книги Олдоса Хаксли Brave New World[7], но технологии искусственно­го управления сенсорным ощущением человека безусловно развивались в течение тысячелетий. Все методики предметно-изобразительного ис­кусства и связи на длинные расстояния можно считать «доминирующи­ми над нормальным функционированием чувств». Даже доисторичес­кие пещерные рисунки давали зрителю некоторое ощущение того, что он видит животных, которых на самом деле там не было. Сегодня мы можем осуществить это более точно, используя фильмы и звукозапись, хотя и не настолько точно, чтобы имитацию можно было перепутать с оригиналом.

Я буду использовать термин генератор изображений для обозначе­ния любого прибора, как-то: планетарий, система класса Hi-Fi или по­лочка для специй, — который может формировать точно определенный сенсорный ввод для пользователя: заданные картинки, звуки, запахи и т. п., которые считают «изображениями». Например, чтобы генери­ровать обонятельное изображение (т. е. запах) ванили, нужно открыть баночку с ванилью, которая стоит на полочке для специй. Чтобы ге­нерировать слуховое изображение (т. е. звук) двадцатого концерта для фортепьяно Моцарта, нужно поставить соответствующий компакт-диск на систему класса Hi-Fi. Любой генератор изображений — это рудимен­тарный вид генератора виртуальной реальности, но термин «виртуаль­ная реальность» обычно оставляют на тот случай, когда присутству­ют и широкий охват сенсорного диапазона пользователя, и ощутимый элемент взаимодействия («ответная реакция») между пользователем и имитируемой категорией.  {104} 

Рис. 5.1. Виртуальная реальность в современном исполнении

Современные видеоигры позволяют осуществить взаимодействие между игроком и объектом игры, но они, как правило, используют только небольшую часть сенсорного диапазона пользователя. Такая «окружающая среда» состоит из изображений на небольшом экране и частично звуков, которые слышит пользователь. Однако уже существу­ют виртуальные видеоигры, более достойные этого названия. Обычно пользователь надевает шлем со встроенными наушниками и двумя те­левизионными экранами (по одному для каждого глаза), иногда — спе­циальные перчатки и другую одежду, изнутри обшитую электрически управляемыми эффекторами (приборами, создающими давление). Там также присутствуют сенсорные датчики, которые фиксируют движе­ние частей тела пользователя, особенно головы. Информация о том, что делает пользователь, передается компьютеру, который вычисля­ет, что должен видеть, слышать и чувствовать пользователь, и реа­гирует, посылая соответствующие сигналы генераторам изображения (рисунок 5.1). Когда пользователь смотрит налево или направо, изобра­жения на двух телевизионных экранах следуют за его взглядом, как и реальное поле зрения, чтобы показать, что находится слева и справа от него в виртуальном мире. Пользователь может протянуть руку и под­нять виртуальный объект, он будет как настоящий на ощупь, потому что эффекторы перчатки генерируют «тактильную обратную связь», соответствующую тому положению и ориентации, в которой виден объ­ект.  {105} 

В настоящее время игры и имитация средств передвижения — ос­новные области применения виртуальной реальности, но в ближайшем будущем предвидится огромное количество новых областей её приме­нения. Для архитекторов скоро станет обычным делом создавать вир­туальные прототипы зданий, по которым клиенты смогут пройтись и проверить модификации на той стадии, когда их можно будет внедрить без особых усилий. Покупатели смогут пройти (или даже пролететь) по виртуальным супермаркетам, не выходя из дома, даже не встреча­ясь с толпой других покупателей и не слушая музыку, которая им не нравится. Но совсем не обязательно, что они останутся в виртуальном супермаркете в одиночестве: в виртуальной реальности за покупками могут пойти вместе сколько угодно человек, у каждого будут как из­ображения остальных, так и изображение супермаркета, но никому из них не придется выходить из дома. Концерты и конференции будут проводить, не назначая места встречи; и выгода здесь не только в эко­номии на стоимости аудиторий, гостиниц и перелетов, но и в том что все участники смогут сидеть на самом лучшем месте одновременно.

Если бы епископ Беркли или инквизиторы знали о виртуальной реальности, они, возможно, ухватились бы за неё, как за совершенную иллюстрацию обманчивости чувств, подтверждающую их аргументы против научного рассуждения. Что произошло бы, если бы летчик пи­лотажного тренажера попытался использовать проверку на реальность доктора Джонсона? Несмотря на то, что виртуальный самолет и окру­жающая его среда в действительности не существуют, они «дают ответ­ную реакцию» летчику, как если бы они существовали. Летчик может открыть дроссель и услышать ответный рев двигателей, почувствовать их давление через сиденье, увидеть в окно, как они вибрируют и вы­брасывают горячий газ, несмотря на то, что их не существует. Летчик может ощутить полет самолета во время шторма, слышать гром и ви­деть дождь, бьющий по ветровому стеклу, хотя в реальности ничего этого нет. В реальности снаружи кабины находится только компьютер, несколько гидравлических домкратов, телевизионные экраны, громко­говорители и совершенно сухое неподвижное помещение.

Делает ли это опровержение солипсизма доктором Джонсоном не­действительным? Нет. Его разговор с Босуэллом мог также произой­ти и в пилотажном тренажере. «Я опровергаю это вот так», — мог сказать он, открывая дроссель и чувствуя ответную реакцию вирту­ального двигателя. Там нет двигателя. А ответную реакцию дает  {106}  компьютер, обрабатывающий программу, которая вычисляет, что сделал бы двигатель, если бы на него «оказали воздействие». Но эти расче­ты, внешние для разума доктора Джонсона, реагируют на управление дросселем так же сложно и автономно, как и двигатель. Следовательно, они выдерживают проверку на реальность, и это справедливо, потому что в действительности эти вычисления — физические процессы внут­ри компьютера, а компьютер — обычный физический объект (не менее физический, чем двигатель), и объект совершенно реальный. Тот факт, что это не реальный двигатель, не имеет никакого отношения к аргу­менту против солипсизма. Как-никак, не все реальное должно легко поддаваться распознаванию. Даже если бы то, что показалось камнем, впоследствии оказалось бы животным, замаскировавшимся под камень, или голографической проекцией, скрывающей садового гномика, это не имело бы особого значения в первоначальной демонстрации доктора Джонсона. Поскольку его реакция была сложной и автономной, доктор Джонсон мог бы совершенно оправданно сделать вывод, что эта реакция была вызвана чем-то реальным, находящимся вне него, и, следователь­но, реальность состоит не только из него.

Тем не менее, существование виртуальной реальности может по­казаться неудобным для тех, чье мировоззрение основано на науке. Только подумайте, что такое генератор виртуальной реальности с точ­ки зрения физики. Конечно, это физический объект, который подчиня­ется тем же законам физики, что и все остальные объекты. Но, кроме того, он может «притворяться». Он может притвориться совершенно другим объектом, который подчиняется ложным законам физики. Бо­лее того, этот процесс может протекать сложно и автономно. Когда пользователь воздействует на него, чтобы проверить реальность того, чем он притворяется, он оказывает ответную реакцию, как если бы он был тем другим, несуществующим объектом, и как если бы ложные законы были истинными. Если бы мы изучали физику только на осно­ве таких объектов, мы вывели бы ошибочные законы. (В самом деле? Удивительно, но дело обстоит не совсем так. Я вернусь к этому вопросу в следующей главе, но, прежде всего, мы должны рассмотреть явление виртуальной реальности поподробнее).

Если принять это во внимание, может показаться, что епископ Беркли имел в виду, что виртуальная реальность — это символ гру­бости человеческих способностей, что её существование должно преду­предить нас о внутренних ограничениях способности людей понимать  {107}  физический мир. Может показаться, что ссылка на виртуальную ре­альность относится к той же философской категории, что и иллюзии, ложные следы и совпадения, поскольку все это явления, которые вроде бы показывают нам нечто реальное, но на самом деле вводят нас в за­блуждение. Мы уже видели, что научное мировоззрение может принять (а в действительности, ожидает) существование явлений, в высшей сте­пени вводящих в заблуждение. Это par excellence мировоззрение, спо­собное согласовать ошибочность, свойственную человеку, и внешние источники ошибок. Тем не менее, явления, вводящие в заблуждение, приветствуются в своей основе. Помимо того, что они любопытны, или того, что мы узнаем из них, почему они вводят в заблуждение, мы пы­таемся избежать этих явлений и предпочитаем обходиться без них. Но виртуальная реальность не относится к этой категории. Мы увидим, что существование виртуальной реальности показывает не то, что че­ловеческая способность понимания мира изначально ограничена, а на­против, то, что изначально она безгранична. Это не аномалия, привне­сенная случайными свойствами человеческих органов чувств, а фунда­ментальное свойство мультиверса в целом. И тот факт, что мультиверс обладает этим свойством, нисколько не смущающим реализм или нау­ку, необходим для обоих: это именно то свойство, которое делает науку возможной. Это не нечто, «без чего мы предпочли бы обойтись»; это не­что, без чего мы буквально не можем обойтись.

Такие заявления могут показаться достаточно претенциозными, если учесть, что их делают, основываясь на пилотажных тренажерах и видеоиграх. Но в общей схеме центральное место занимает виртуальная реальность в целом, а не частный генератор виртуальной реальности. Поэтому я хочу рассмотреть виртуальную реальность в максимально обобщенном виде. Каковы её наивысшие пределы, если таковые име­ются? Какую окружающую среду, в принципе, можно искусственно получить и с какой точностью? Говоря «в принципе», я имею в виду, игнорируя преходящие ограничения технологии, но принимая во вни­мание все ограничения, которые могут наложить принципы логики и физики.

По моему определению генератор виртуальной реальности — это машина, которая дает пользователю ощущение какой-то реальной или вымышленной окружающей среды (например, самолета), которая на­ходится, или кажется, что находится, вне разума пользователя. Я бу­ду называть это внешними ощущениями. Внешние ощущения должны  {108}  противопоставляться внутренним ощущениям, как-то: нервозность при первой самостоятельной посадке или удивление при внезапном появле­нии грозы на ясном голубом небе. Генератор виртуальной реальности становится косвенной причиной появления у пользователя как внутрен­них, так и внешних ощущений, но его невозможно запрограммировать так, чтобы он обеспечивал точно определенные внутренние ощущения. Например, летчик, который совершает почти один и тот же полет на тренажере дважды, получит в обоих случаях примерно одни и те же внешние ощущения, но во второй раз он, возможно, меньше удивится появлению грозы. Возможно, во второй раз летчик также по-другому отреагирует на появление грозы, что, в свою очередь, изменит после­дующие внешние ощущения. Но дело в том, что хотя и можно запро­граммировать машину на появление грозы в поле зрения летчика, когда это желательно, невозможно запрограммировать желаемую ответную реакцию летчика.

Можно представить технологию за пределами виртуальной реаль­ности, которая могла бы вызывать точно определенные внутренние ощущения. Некоторые внутренние ощущения, например, настроения, вызванные определенными наркотиками, уже можно получить искус­ственно, и в будущем этот диапазон несомненно расширится. Но генера­тору точно определенных внутренних ощущений в общем пришлось бы иметь способность доминировать над нормальным функционированием как разума, так и чувств пользователя. Другими словами, он замещал бы пользователя другим человеком. Это свойство помещает такие ма­шины в категорию, отличную от категории генераторов виртуальной реальности. Для них потребуется совсем другая технология, они под­нимут совсем другие философские проблемы, поэтому я исключил их из своего определения виртуальной реальности.

Еще один вид ощущений, которые несомненно нельзя передать ис­кусственно, — это логически невозможные ощущения. Я сказал, что пи­лотажный тренажер может создать ощущение физически неосуществи­мого полета сквозь гору. Но ничто не сможет создать ощущение разло­жения на множители числа 181, потому что это логически невозможно: 181 — это простое число. (Поверить, что кто-то разложил число 181 на множители, — логически возможное ощущение, но оно внутреннее, а потому не входит в сферу виртуальной реальности). Другое логи­чески невозможное ощущение — бессознательность, поскольку, когда человек находится в бессознательном состоянии, он по определению  {109}  ни­чего не испытывает. Состояние, когда человек ничего не испытывает, отличается от состояния, когда человек испытывает полное отсутствие ощущений, — сенсорная изоляция, — которая, безусловно, является фи­зически осуществимой средой.

После исключения ощущений, логически невозможных, и ощуще­ний внутренних у нас остался обширный класс логически возможных, внешних ощущений — ощущений сред, получение которых логически возможно, но физически не всегда осуществимо (таблица 5.1). Что-либо является физически возможным, если оно не запрещено законами физи­ки. В этой книге я сделаю допущение, что «законы физики» включают одно, ещё неизвестное, правило, определяющее начальное состояние или другие дополнительные данные, необходимые, в принципе, для полного описания мультиверса (иначе эти данные стали бы набором внутрен­не необъяснимых фактов). В таком случае получение среды физически возможно тогда и только тогда, когда она действительно существует где-то в мультиверсе (т. е. в какой-то вселенной или нескольких все­ленных). Что-либо является физически невозможным, если это не про­исходит нигде в мультиверсе.

Таблица 5.1. Классификация ощущений с примерами. Виртуальная реальность связана с получением логически возможных, внешних ощущений (верхняя левая часть таблицы)

Я определяю репертуар генератора виртуальной реальности как набор реальных или вымышленных сред, ощущение нахождения в ко­торых пользователя можно запрограммировать в генератор. Мой вопрос о наивысших пределах виртуальной реальности можно сформулировать следующим образом: какие ограничения, если таковые имеются, зако­ны физики накладывают на репертуар генераторов виртуальной реаль­ности?

Виртуальная реальность всегда включает создание искусственных ощущений — формирование изображений, — поэтому с него мы и  {110}  начнём. Какие ограничения законы физики накладывают на способность генераторов изображений создавать искусственные изображения, пере­давать подробности и охватывать соответствующие сенсорные диапа­зоны? Существуют очевидные способы улучшения передачи каких-то подробностей с помощью современного пилотажного тренажера, напри­мер, применение телевизоров с более высокой резкостью. Но возможно ли, хотя бы в принципе, передать реальный самолет и его среду в выс­шей степени подробно, т. е. с максимальными подробностями, которые могут воспринять чувства летчика? Для слуха этот наивысший предел был почти достигнут в системах Hi-Fi. Что касается зрения, этот пре­дел достижим. А что касается других чувств? Возможно ли физически построить универсальный химический завод, который сможет произ­водить любую точно определенную комбинацию миллионов различных душистых химикатов в одно мгновение? Или создать машину, которая, будучи помещена в рот гурмана, может передать вкус и состав любого возможного блюда, не говоря уже о создании чувств голода и жажды, предшествующих приему пищи, и последующего физического удовле­творения? (Голод, жажда и другие ощущения, например, равновесие и напряжение мускулов, воспринимаются как внутренние по отношению к телу, но они являются наружными по отношению к разуму и потому потенциально относятся к сфере виртуальной реальности).

Сложность при создании таких машин может заключаться прос­то в технологии, но что вы думаете о следующем: предположим, что летчик пилотажного тренажера направляет виртуальный самолет вер­тикально вверх на высокой скорости, а затем отключает двигатели. Са­молет должен продолжать подниматься до тех пор, пока его восходящий момент не будет исчерпан, а потом он начнет падать с возрастающей скоростью. Все движение в целом называется свободным падением, не­смотря на то, что первоначально самолет двигался вверх, потому что движение происходит только под влиянием тяготения. Когда самолет находится в состоянии свободного падения, его экипаж находится в со­стоянии невесомости и может плавать по кабине как космонавты на орбите. Вес восстанавливается только тогда, когда к самолету снова прикладывается направленная вверх сила, что вскоре должно произой­ти под действием аэродинамики или неумолимой земли. (В практике состояния свободного падения обычно достигают при полете самоле­та под давлением по той же параболической траектории, по которой он летел бы при отсутствии силы двигателя и сопротивления воздуха.)  {111}  Свободно падающие самолеты используют для тренировки космонавтов в условиях невесомости перед отправкой в космос. Настоящий самолет может находиться в состоянии свободного падения пару или больше минут, потому что он может подниматься вверх и падать вниз в пре­делах нескольких километров. Но пилотажный тренажер, находящийся на земле, может находиться в состоянии свободного падения всего одно мгновение, пока он может подняться на своих опорах до их максималь­ного растяжения, а потом упасть. Пилотажные тренажеры (по крайней мере, современные) нельзя использовать для тренировок в условиях невесомости: для этого необходим реальный самолет.

Можно ли исправить этот недостаток пилотажных тренажеров, предоставив им возможность имитировать свободное падение на земле (в этом случае их можно было бы использовать и в качестве тренажеров космических полетов)? Это не так просто, поскольку на пути встают законы физики. Известная физика даже в принципе не дает другого спо­соба устранения веса тела, кроме свободного падения. Единственный способ поместить пилотажный тренажер в состояние свободного паде­ния, чтобы он оставался неподвижным на поверхности Земли, — это каким-то образом подвесить над ним массивное тело, например, дру­гую планету такой же массы или черную дыру. Даже если бы это было возможно (не забывайте, что нас занимает не немедленный практичес­кий интерес, а то, что позволяют или не позволяют законы физики), реальный самолет также мог бы осуществлять частые, сложные изме­нения в величине и направлении веса экипажа путем маневрирования и включения и выключения двигателей. Для имитации этих измене­ний массивное тело пришлось бы вращать почти с такой же частотой, и, по-видимому, скорость света (если не что-то другое) наложила бы абсолютный предел на частоту этого вращения.

Однако для имитации свободного падения пилотажный тренажер должен создавать не настоящую невесомость, а ощущение невесомости, поэтому, чтобы приблизиться к состоянию невесомости, используются различные методы, не включающие свободное падение. Например, кос­монавты тренируются под водой в космических скафандрах, настолько тяжелых, что их плавучесть равна нулю. Другой метод заключается в использовании специальных ремней, которые поднимают космонав­та в воздух под управлением компьютера для имитации невесомости. Но все это весьма грубые методы, и ощущения, которые они обеспечи­вают, вряд ли можно спутать с реальными. Человека неизбежно  {112}  поддерживают силы, которые он не может не чувствовать. Точно так же совсем не передается характерное ощущение падения, испытываемое через органы чувств внутреннего уха. Можно представить дальней­шие усовершенствования: использование несущих жидкостей с очень низкой вязкостью: транквилизаторов, создающих ощущение падения. Но возможно ли вообще передать ощущение свободного падения совер­шенным образом в пилотажном тренажере, который прочно стоит на земле? Если нет, то, должно быть, существует абсолютный предел до­стоверности искусственной передачи впечатления полета. Чтобы отли­чить реальный самолет от имитации, летчику достаточно пролететь по траектории свободного падения и посмотреть, появится состояние невесомости или нет.

В общей формулировке задача заключается в следующем. Для до­минирования над нормальным функционированием органов чувств мы должны посылать им изображения, похожие на те, которые произве­ла бы имитируемая среда. Мы также должны перехватывать и подав­лять изображения, произведенные действительной средой, окружаю­щей пользователя. Но такие манипуляции с изображениями представ­ляют собой физические операции, которые можно осуществить только при помощи процессов, имеющихся в реальном физическом мире. Свет и звук можно довольно просто физически поглотить и заместить. Но как я уже сказал, это не относится к тяготению: законы физики этого не позволяют. Похоже, что пример с невесомостью наводит на мысль о том, что точная имитация невесомости с помощью машины, кото­рая в действительности неподвижна, может нарушить законы физи­ки.

Но это не так. Невесомость и все другие ощущения, в принци­пе, можно передать искусственно. В конце концов, станет возможным обойти все органы чувств и оказать непосредственное воздействие на нервы, связывающие их с мозгом.

Таким образом, нам не нужны универсальные химические заводы или невероятные машины искусственной гравитации. Как только мы поймем органы обоняния настолько, чтобы расшифровать код сигналов, которые они посылают в мозг при обнаружении запахов, компьютер, должным образом подсоединенный к соответствующим нервам, смо­жет посылать в мозг те же самые сигналы. Тогда мозг сможет ощутить запахи без присутствия соответствующих химических веществ, такие вещества могли даже никогда не существовать. Точно так же мозг смо­жет  {113}  испытать настоящее ощущение невесомости даже при нормальном тяготении. И, конечно, не нужны будут ни телевизоры, ни наушники.

Таким образом, законы физики не накладывают ни малейшего ограничения на диапазон и точность генераторов изображений. Не су­ществует возможного ощущения или ряда ощущений, присущих людям, которые в принципе невозможно было бы передать искусственно. Когда-нибудь в качестве обобщения всех фильмов появится то, что Олдос Хаксли в книге Brave New World назвал «фили» (feelie)[8] — фильмы для всех чувств. Можно будет почувствовать покачивание лодки под нога­ми, услышать шорох волн, ощутить запах моря, увидеть, как изменя­ется цвет заката на горизонте, почувствовать как ветерок перебирает ваши волосы (неважно есть они у вас или нет) — и все это, оставаясь на суше или дома. И это ещё не все: фили также легко смогут изобразить сцены, которые никогда не существовали и не могли существовать. Или они смогут сыграть нечто, подобное музыке: прекрасные абстрактные сочетания ощущений, предназначенные для услады чувств.

То, что каждое возможное ощущение можно передать искусствен­но — это одно; а то, что когда-нибудь станет возможным однажды и навсегда создать отдельную машину, способную передавать любые возможные ощущения, — это уже нечто большее: это универсальность. Машина фили, обладающая такой возможностью, стала бы универсаль­ным генератором изображений.

Возможность существования универсального генератора изобра­жений вынуждает нас изменить наши взгляды на вопрос, касающий­ся наивысших пределов технологии фили. В настоящее время прогресс такой технологии заключается в изобретении более разнообразных и более точных способов стимуляции органов чувств. Но этот класс за­дач исчезнет, как только мы расшифруем коды, используемые нашими органами чувств, и разработаем достаточно тонкий метод стимуляции нервов. Как только мы научимся искусственно генерировать сигналы нервов настолько точно, чтобы мозг не мог уловить разницу между ис­кусственными сигналами и сигналами, посылаемыми нашими органами чувств, в повышении точности этого метода не будет необходимости. К этому времени технология станет более совершенной, и следующая задача будет состоять не в том, как передать данные ощущения, а в том, какие ощущения передавать. В ограниченной области это происходит  {114}  уже сегодня, когда задача получения максимально возможной точнос­ти воспроизведения звука уже близка к тому, чтобы быть решенной с помощью компакт-дисков и современного поколения звуковоспроиз­водящего оборудования. Скоро уже не станет такого понятия как люби­тель Hi-Fi. Любителей воспроизведения звука скоро будет заботить не точность воспроизведения (воспроизведение будет обыденно точным до предела человеческого распознавания), а то, какие звуки должны быть записаны в первую очередь.

Если в генератор изображений поставить запись, взятую из жиз­ни, её точность можно определить как близость передаваемых изоб­ражений к тем изображениям, которые человек получил бы в реальной ситуации. В более общем случае, если генератор передает искусственно созданные изображения, например, мультфильм или музыку с записи, точность — это близость передаваемых образов к тем, которые нуж­но передать. Под «близостью» мы подразумеваем близость, восприни­маемую пользователем. Если передача настолько близка к оригиналу, что пользователь не может отличить одно от другого, то мы можем назвать эту передачу совершенно точной. (Таким образом, передача, точная для одного пользователя, может содержать неточности, кото­рые может ощутить другой пользователь с более острым слухом или другими обостренными чувствами).

Универсальный генератор изображений, конечно, не содержит за­писи всех возможных изображений. Универсальным его делает следу­ющее: при наличии записи любого возможного изображения он может вызвать у пользователя соответствующие ощущения. В универсальном генераторе слуховых ощущений — совершенной системе Hi-Fi — за­пись можно представить в виде компакт-диска. Для удобства слуховых ощущений, которые длятся дольше, чем это позволяет объем памяти диска, мы должны включить механизм, способный последовательно за­гружать в машину любое количество дисков. Это же условие остается в силе для всех остальных универсальных генераторов изображений, т. к., строго говоря, генератор изображений не является универсаль­ным, пока в нем нет механизма бесконечно долгого воспроизведения записей. Более того, когда машина будет работать в течение долгого времени, ей понадобится уход, иначе воспроизводимые ею изображе­ния будут ухудшаться или вовсе исчезнут. Эти и подобные им сооб­ражения связаны с тем, что, если мы рассматриваем отдельный фи­зический объект изолированно от остальной вселенной, то мы всегда  {115}  получаем аппроксимацию. Универсальный генератор изображений уни­версален только в определенном внешнем контексте, в котором допус­кается, что его обеспечивают, например, энергией, механизмом охлаж­дения, и периодически обслуживают. Такие внешние нужды машины не запрещают считать её «отдельной универсальной машиной» при усло­вии, что законы физики не препятствуют удовлетворению этих нужд и для удовлетворения этих нужд не нужно изменять конструкцию ма­шины.

Как я уже сказал, формирование изображений — всего лишь одна составляющая виртуальной реальности: существует ещё и крайне важ­ный интерактивный элемент. Генератор виртуальной реальности мож­но посчитать генератором изображений, изображения которого опреде­ляются не полностью в самом начале, а частично зависят от действий пользователя. Такой генератор не проигрывает для пользователя зара­нее определенную последовательность изображений, как это произошло бы при просмотре фильма или фили. Он придумывает эти изображения по пути, учитывая непрерывный поток информации о действиях поль­зователя. Современные генераторы виртуальной реальности, например следят за положением головы пользователя, используя сенсоры движе­ния, как показано на рисунке 5.1. В конечном счете, им приходится следить за всеми действиями пользователя, которые могут повлиять на субъективный внешний вид имитируемой среды. Эта среда может состоять из собственного тела пользователя: поскольку тело находит­ся вне разума, описание среды виртуальной реальности вполне может включать требование, что тело пользователя должно казаться замещен­ным новым телом с определенными свойствами.

Человеческий разум воздействует на тело и на внешний мир, ис­пуская нервные импульсы. Следовательно, генератор виртуальной ре­альности, в принципе, может получить всю необходимую информацию о действиях пользователя, воспринимая нервные сигналы, выходящие из мозга пользователя. Эти сигналы, вместо того, чтобы попасть в те­ло пользователя, могут быть переданы компьютеру и расшифрованы с целью точного определения следующего движения тела пользователя. Сигналы, которые компьютер отправляет обратно в мозг, могут быть подобны сигналам, которые послало бы тело, если бы находилось в этой точно определенной среде. Виртуальное тело могло бы реагировать от­лично от реального, если бы этого потребовало определение, например оно смогло бы выжить в виртуальной среде, которая убила бы реальное  {116}  человеческое тело, или имитировать неправильное функционирование тела.

Я признаю, что говорить о взаимодействии человеческого разу­ма с внешним миром только через испускание и получение нервных импульсов, было бы, пожалуй, слишком большой идеализацией. В обо­их направлениях проходят и химические сообщения. Я допускаю, что, в принципе, эти сообщения тоже можно перехватить и заместить в не­которой точке между мозгом и остальным телом. Таким образом, поль­зователь останется неподвижным, подсоединенным к компьютеру, но у него возникнет ощущение полного взаимодействия с виртуальным миром — реальной жизни в этом мире. Рисунок 5.2 иллюстрирует представляемое мной. Кстати, несмотря на то, что такая технология — дело будущего, идея о ней гораздо старее самой теории вычисления. В нача­ле семнадцатого века Декарт уже рассматривал философские следствия манипулирующего чувствами «демона», который по сути был генерато­ром виртуальной реальности, подобным показанному на рисунке 5.2, со сверхъестественным разумом, заменявшим компьютер.

Из предшествующего рассказа ясно, что любой генератор вирту­альной реальности должен иметь, по крайней мере, три главных со­ставляющих:

набор сенсоров (которыми могут быть детекторы нервных импуль­сов), чтобы узнать о действиях пользователя:

набор генераторов изображений (в роли которых могут выступить приборы стимуляции нервов);

управляющий компьютер.

До настоящего времени мое внимание концентрировалось на пер­вых двух составляющих: сенсорах и генераторах изображений. Дело в том, что при современном примитивном состоянии технологии ис­следование виртуальной реальности всё ещё заключается в формиро­вании изображений. Но заглянув за преходящие технологические огра­ничения, мы увидим, что генераторы изображений просто напросто обеспечивают интерфейс — «соединительный кабель» — между поль­зователем и настоящим генератором виртуальной реальности, которым является компьютер. Виртуальная среда полностью создается внутри компьютера. Именно компьютер обеспечивает сложную и независимую «ответную реакцию», которая оправдывает использование слова «реаль­ность» в сочетании «виртуальная реальность». Соединительный кабель  {117}  ничего не вносит в среду, воспринимаемую пользователем, с точки зре­ния пользователя он «прозрачен» в той же степени, в какой пользователь не считает свои собственные нервы частью окружающей его среды. Та­ким образом, будущие генераторы виртуальной реальности лучше всего описать как генераторы с одной главной составляющей, компьютером с несколькими обычными периферийными устройствами.

Рис. 5.2. Вариант возможного будущего исполнения виртуальной реальности

Я не хочу недооценивать практические задачи, связанные с пере­хватом всех нервных сигналов, поступающих в человеческий мозг и выходящих из него, и расшифровкой различных кодов таких процес­сов. Но это конечный набор задач, которые нам придется решить толь­ко один раз. Кроме того, основное внимание технологии виртуальной реальности сдвинется раз и навсегда к компьютеру, к задаче его про­граммирования для передачи различных сред. Какие среды мы сможем передавать, уже будет зависеть не от того, какие сенсоры и генераторы изображений мы сможем построить, а от того, какие среды мы сможем точно определить. «Точное определение» среды будет означать наличие программы для компьютера, являющегося сердцем генератора вирту­альной реальности.

Из-за интерактивной природы виртуальной реальности понятие точной передачи для неё не столь просто, как для формирования из­ображений. Как я уже сказал, точность генератора изображений — это мера близости переданных изображений к тем, которые следовало пе­редать. Но в виртуальной реальности обычно не существует изображе­ний, которые нужно передать: нужно передать пользователю ощущение  {118}  нахождения в определенной среде. Точное определение среды вирту­альной реальности означает не определение того, что должен ощущать пользователь, а скорее определение того, как среда должна отреагиро­вать на каждое возможное действие пользователя. Например, при вир­туальной игре в теннис заранее можно определить внешний вид корта, погоду, поведение публики и уровень игры противника. Но ход игры не определяют: он зависит от множества решений, принимаемых пользо­вателем во время игры. Каждый набор решений приведет к различным реакциям виртуальной среды и, следовательно, к различным вариантам игры.

Количество возможных вариантов игры в одной окружающей сре­де, т. е. переданное одной программой, огромно. Рассмотрим передачу Центрального Корта Уимблдона с точки зрения игрока. Предположим, что в каждую секунду игры игрок может двигаться одним из двух заметных способов (заметных для игрока). Затем через две секунды количество возможных вариантов игры станет равным четырем, че­рез три секунды — восьми и т. д. Примерно через четыре минуты ко­личество возможных вариантов игры, заметно отличающихся друг от друга, превысит количество атомов во вселенной и продолжит расти в экспоненциальной зависимости. Чтобы программа точно передала одну такую среду, она должна иметь возможность реагировать на любой из несметного количества заметно отличающихся вариантов в зависимос­ти от поведения пользователя. Если две программы одинаково реаги­руют на каждое возможное действие пользователя, значит, они переда­ют одну и ту же среду: если же их реакции даже на одно возможное действие заметно отличаются друг от друга, значит, они передают раз­личные среды.

Это свойство остается неизменным, даже если пользователь ни­когда не произведет то действие, которое выявит разницу. Окружаю­щая среда, передаваемая программой (для данного вида пользователей, с данным соединительным кабелем), — это логическое свойство про­граммы, которое не зависит от того, выполнялась ли когда-нибудь эта программа. Передаваемая среда точна настолько, насколько она способ­на отреагировать предполагаемым образом на каждое возможное дей­ствие пользователя. Таким образом, её точность зависит не только от ощущений, действительно возникающих у пользователей, но и от ощу­щений, которые у них не возникают, но возникли бы, поведи они себя иначе во время передачи. Возможно, это звучит парадоксально, но, как  {119}  я уже сказал, это прямое следствие того, что виртуальная реальность, как и сама реальность, интерактивна.

Этот факт порождает важное отличие между формированием из­ображений и формированием виртуальной реальности. Пользователь в принципе может почувствовать, измерить и констатировать точность передачи изображения генератором изображений, но не точность пе­редачи виртуальной реальности. Например, если вы любите музыку и достаточно хорошо знаете определенное музыкальное произведение, вы можете послушать его исполнение и подтвердить совершенно точ­ную его передачу, в принципе, вплоть до последней ноты, выражения, динамики и т. п. Но если вы фанат тенниса, в совершенстве знающий Центральный Корт Уимблдона, вы все равно не сможете подтвердить абсолютную точность вышеназванной передачи. Даже если вы сможе­те исследовать виртуальный Центральный Корт сколь угодно долго и «воздействовать» на него всевозможными способами и даже если вы по­лучите равный доступ на реальный Центральный Корт для сравнения, вы не сможете даже констатировать, что программа действительно пе­редала его реальное расположение. Дело в том, что вы не можете знать, что произошло бы, если бы вы исследовали его чуточку дольше или вовремя оглянулись. Возможно, если бы вы сели в кресло судьи и за­кричали «фолт!», ядерная подводная лодка всплыла бы на поверхность травы и торпедировала бы табло.

С другой стороны, если вы обнаружите хотя бы одно отличие меж­ду виртуальной и реальной средой, вы можете немедленно заявить о неточной передаче. Если только виртуальной среде не присущи не­которые умственно непредсказуемые черты. Например, рулетка скон­струирована так, что её поведение предсказать невозможно. Если мы снимем фильм о рулетке, на которой играют в казино, этот фильм мож­но назвать точным, если числа, которые выпадают на рулетке в филь­ме, совпадают с числами, которые действительно выпадали на рулетке во время съемок фильма. При каждом показе фильма числа будут те же самые: это абсолютно предсказуемо. Таким образом, точное изоб­ражение непредсказуемой среды должно быть предсказуемым. Но ка­кое это имеет значение для точной передачи рулетки в виртуальной реальности? Как и раньше, это означает, что пользователь не должен обнаруживать заметные отличия от оригинала. Но это предполагает, что передача не должна вести себя идентично оригиналу: если бы это происходило, либо её, либо этот оригинал можно было бы использовать  {120}  для предсказания поведения оставшегося, и не осталось бы ничего не­предсказуемого. Кроме того, передача не должна вести себя одинаково каждый раз, когда её осуществляют. Совершенно переданная рулетка должна быть столь же применима для азартных игр, сколь и реальная. Следовательно, она должна быть столь же непредсказуема. А также она должна быть столь же беспристрастна, т. е. все числа должны появлять­ся абсолютно беспорядочно, с равной степенью вероятности.

Каким образом мы узнаем непредсказуемые среды, и как мы до­казываем беспристрастное распределение случайных чисел? Мы про­веряем, соответствует ли передача рулетки её точному определению. Эта проверка осуществляется точно так же, как проверка на реаль­ность какой-либо вещи: мы воздействуем на неё и смотрим, реагирует ли она так, как сказано. Мы проводим значительное количество по­добных наблюдений и осуществляем статистические проверки резуль­татов. И опять, сколько бы проверок мы ни провели, мы не сможем констатировать точность передачи или даже вероятность точности пе­редачи. Ибо как бы беспорядочно, на первый взгляд, ни выпадали числа, они, тем не менее, могут выпадать по какой-то тайной схеме, которая позволила бы пользователю, знакомому с ней, предсказывать эти числа. Или, возможно, спроси мы вслух дату битвы при Ватерлоо, следующие два числа неизменно показали бы эту дату: 18, 15. С другой стороны, ес­ли появляющаяся последовательность кажется небеспристрастной, мы не можем быть уверены в том, что она таковой и является, но мы мо­жем говорить о вероятности неточности передачи. Например, если на нашей виртуальной рулетке десять раз подряд выпадает ноль, нам сле­дует сделать вывод, что вероятно, мы неточно передали беспристраст­ную рулетку.

При обсуждении генераторов изображений я сказал, что точность переданного изображения зависит от остроты и других характеристик чувств пользователя. Для виртуальной реальности это простейшая за­дача. Безусловно, генератор виртуальной реальности, в совершенстве передающий данную среду для человека, не сможет этого сделать для дельфинов или инопланетных существ. Чтобы передать данную среду для пользователя с данным видом органов чувств, генератор виртуаль­ной реальности должен быть физически приспособлен к таким органам чувств, а в его компьютере должны быть запрограммированы их харак­теристики. Однако модификации, которые необходимо осуществить для данного вида пользователей, конечны, и их нужно осуществить лишь  {121}  однажды. Они эквивалентны тому, что я назвал сооружением нового «соединительного кабеля». При рассмотрении даже более сложных сред задача их передачи для данного типа пользователей становится решае­мой с помощью написания программ вычисления поведения этих сред; причем зависящая от вида часть задачи, в которой и состоит сложность, становится по сравнению с этими программами пренебрежимо малой. Сейчас мы говорим о наивысших пределах виртуальной реальности, поэтому мы рассматриваем сколь угодно точные, длинные и сложные передачи. Именно поэтому имеет смысл говорить о «передаче данной среды», не определяя, для кого эта среда передается.

Мы видели, что существует четко определенное понятие точности передачи виртуальной реальности: точность — это близость (в преде­лах восприятия) передаваемой среды к той, которую необходимо пере­дать. Но эта точность должна быть близка при каждом возможном ва­рианте поведения пользователя, поэтому, каким бы наблюдательным ни был человек, находящийся в виртуальной среде, он не сможет конста­тировать её точность (или вероятную точность). Но ощущение иногда может показать неточность (или вероятную неточность) передачи.

Этот разговор о точности в виртуальной реальности отражает от­ношение между теорией и экспериментом в науке. Там тоже можно экспериментально доказать ложность общей теории, но никогда нельзя доказать её истинность. Кроме того, поверхностный взгляд на науку также заключается в том, что она состоит только из предсказаний на­ших чувств-впечатлений. Правильный же взгляд следующий: несмотря на то, что чувства-впечатления играют свою роль, наука состоит в по­нимании всей реальности, только бесконечно малая часть которой нам знакома.

Программа в генераторе виртуальной реальности воплощает об­щую предсказательную теорию поведения виртуальной среды. Осталь­ные составляющие следят за поведением пользователя, зашифровывают и расшифровывают сенсорные данные; выполняют, как я уже сказал, довольно тривиальные функции. Таким образом, если среда физически возможна, её передача, в сущности, эквивалентна нахождению правил предсказания результатов каждого эксперимента, который можно осу­ществить в этой среде. Из-за определенного способа создания научного знания даже более точные правила предсказания можно обнаружить только через лучшие объяснительные теории. Такая точная передача физически возможной среды зависит от понимания её физики.  {122} 

Обратное также верно: открытие физики среды зависит от осу­ществления её передачи в виртуальной реальности. Обычно говорят, что научные теории только описывают и объясняют физические объ­екты и процессы, но не передают их. Например, объяснение солнеч­ных затмений можно напечатать в книге. В компьютерную программу можно заложить астрономические данные и физические законы пред­сказания затмения и распечатать описание этого затмения. Но чтобы передать затмение в виртуальной реальности, потребуется дальнейшее программное и аппаратное обеспечение. Однако все это уже есть в на­шем мозге! Слова и числа, напечатанные компьютером, эквивалентны «описаниям» затмения только потому, что кто-то знает значение этих символов. То есть символы пробуждают в разуме читателя некое подо­бие какого-то предсказанного эффекта затмения, по отношению к ко­торому и проверяют настоящий эффект затмения. Более того, пробуж­даемое «подобие» интерактивно. Затмение можно наблюдать разными способами: невооруженным глазом, с помощью фотографий или различ­ных научных инструментов; из некоторых мест на Земле видно полное затмение, из других мест — частичное, а из третьих — затмение не видно вообще. В каждом случае наблюдатель будет видеть различные изображения, каждое из которых можно предсказать с помощью тео­рии. Компьютерное описание вызывает в разуме читающего не просто отдельное изображение или ряд изображений, а общий метод создания множества различных изображений, соответствующих множеству спо­собов размышления пользователя при осуществлении наблюдений. Дру­гими словами, это передача в виртуальной реальности. Таким образом, в достаточно широком смысле, если принять во внимание процессы, ко­торые должны происходить внутри разума ученого, наука и передача физически возможных сред в виртуальной реальности — это два тер­мина, обозначающие одно и то же.

А как же быть с передачей физически невозможных сред? В прин­ципе, существует два различных вида передачи в виртуальной ре­альности: меньшинство, описывающее физически возможные среды, и большинство, описывающее физически невозможные среды. Но не исчезнет ли это различие при ближайшем рассмотрении? Рассмотрим генератор виртуальной реальности в процессе передачи физически не­возможной среды. Это может быть пилотажный тренажер, обрабаты­вающий программу вычисления вида, который открывается из кабины самолета, когда его скорость превышает скорость света. Пилотажный  {123}  тренажер — это передача той среды. Но пилотажный тренажер — это физический объект, окружающий пользователя, и в этом смысле он сам является средой, которую ощущает пользователь. Давайте рассмотрим эту среду. Ясно, что эта среда физически возможна. Поддается ли та­кая среда передаче? Безусловно. В действительности, её на редкость легко передать: достаточно просто использовать второй тренажер той же конструкции, работающий по идентичной программе. При таких обстоятельствах второй пилотажный тренажер можно считать переда­ющим либо физически невозможный самолет, либо физически возмож­ную среду, то есть первый пилотажный тренажер. Подобным образом первый пилотажный тренажер можно рассмотреть как передающий фи­зически возможную среду, то есть второй пилотажный тренажер. Ес­ли допустить, что любой генератор виртуальной реальности, который в принципе, можно построить, можно, в принципе, построить и ещё раз, то из этого следует, что каждый генератор виртуальной реальнос­ти, работающий по любой программе из своего репертуара, передает какую-то физически возможную среду. Он может передавать и другие вещи, включая физически невозможные среды, но, в частности, всегда есть некая физически возможная среда, которую он передает.

Так какие же физически невозможные среды можно передать в виртуальной реальности? В точности те, которые заметно не отлича­ются от физически возможных сред. Следовательно, физический мир и миры, которые можно передать в виртуальной реальности, связаны между собой гораздо более тесно, чем кажется. Мы считаем одни пере­дачи в виртуальной реальности описывающими факт, а другие — опи­сывающими вымысел, но вымысел — это всегда интерпретация в разу­ме наблюдателя. В виртуальной реальности не существует такой среды, которую пользователь вынужден был бы интерпретировать как физи­чески невозможную.

По своему выбору мы могли бы передавать некоторую среду как предсказанную какими-то «законами физики», отличными от истин­ных. Мы можем сделать это ради тренировки, развлечения или аппрок­симации, потому что осуществить истинную передачу слишком слож­но или слишком дорого. Если используемые нами законы близки к ис­тинным настолько, насколько это возможно, и известны ограничения наших действий, мы можем назвать такие передачи «прикладной ма­тематикой» или «вычислительной техникой». Если переданные объекты значительно отличаются от физически возможных, мы можем назвать  {124}  такую передачу «чистой математикой». Если физически невозможную среду передают ради развлечения, мы называем это «видео игрой» или «компьютерным искусством». Все это интерпретации. Они могут быть полезны или даже необходимы для объяснения наших мотивов при осу­ществлении определенной передачи. Но что касается самой передачи, всегда существует альтернативная интерпретация: эта передача точно описывает какую-то физически возможную среду.

Математиков не принято считать формой виртуальной реальнос­ти. Мы обычно думаем, что математики занимаются абстрактными категориями, например, числами и множествами, не воздействующи­ми на чувства; а потому, может показаться, что проблемы об искус­ственной передаче их воздействия на нас возникнуть не может. Одна­ко, несмотря на то, что математические категории не воздействуют на чувства, ощущение занятий математикой является внешним в той же степени, в какой является внешним ощущение занятий физикой. Мы делаем заметки на бумаге, смотрим на них или представляем, что смотрим на них: на самом деле мы не можем заниматься математи­кой, не представляя абстрактных математических категорий. Но тем самым мы представляем среду, «физика» которой воплощает сложные и автономные свойства этих категорий. Например, представляя абстракт­ное понятие отрезка прямой нулевой толщины, мы можем представить прямую, которая видима, но её ширина незаметна. Это уже можно вместить в физическую реальность. Но математически толщина этой прямой должна оставаться нулевой даже при произвольно выбранном увеличении. Это свойство не является свойством любой физической прямой, но его можно достичь в виртуальной реальности нашего вооб­ражения.

Воображение — это непосредственная форма виртуальной реаль­ности. Может быть это не так очевидно, но наше «непосредственное» восприятие мира через наши чувства — тоже виртуальная реальность. Дело в том, что наше внешнее ощущение никогда не бывает непосредст­венным; мы никогда не воспринимаем непосредственно даже сигналы наших нервов — иначе мы просто не знали бы, что делать с потока­ми электрических потрескиваний, создаваемых ими. Непосредственно мы ощущаем только передачу в виртуальной среде, удобно созданную для нас нашим бессознательным разумом из совокупности сенсорных данных и сложных теорий их интерпретации, рожденных в разуме и приобретенных извне (т. е. программ).  {125} 

Мы, реалисты, придерживаемся мнения, что реальность где-то там: объективная, физическая, независимая от того, что мы о ней ду­маем. Но мы никогда не ощущаем эту реальность непосредственно. Каждая отдельная частичка нашего внешнего ощущения — часть вир­туальной реальности. И каждая отдельная крупинка нашего знания — включая знание нефизических миров логики, математики, философии, воображения, вымысла, искусства и фантазии — закодирована в виде программ для передачи этих миров с помощью генератора виртуальной реальности нашего собственного мозга.

Таким образом, виртуальная реальность является частью не толь­ко науки — рассуждения о физическом мире. Все рассуждение, все мышление и все внешние ощущения — формы виртуальной реальности. Все это физические процессы, которые до сих пор наблюдались только в одном месте вселенной, вблизи планеты Земля. В главе 8 мы увидим, что все жизненные процессы тоже связаны с виртуальной реальнос­тью, но у людей с ней особые взаимоотношения. С биологической точки зрения передача их окружающей среды в виртуальной реальности — это характеристическое средство выживания людей. Другими словами, это причина существования людей. Экологическая ниша, занимаемая людьми, зависит от виртуальной реальности так же непосредственно и абсолютно, как экологическая ниша, занимаемая коалами, зависит от эвкалиптовых листьев.

ТЕРМИНОЛОГИЯ

Генератор изображений — прибор, способный создавать у поль­зователя точно определенные ощущения.

Универсальный генератор изображений — генератор изобра­жений, который можно запрограммировать на создание любого ощуще­ния, которое способен испытать пользователь.

Внешнее ощущение — ощущение чего-либо, что находится за пределами собственного разума.

Внутреннее ощущение — ощущение чего-либо, что находится в собственном разуме.

Физически возможный — не запрещенный законами физики. Среда физически возможна тогда и только тогда, когда она существует где-либо в мультиверсе (допуская, что начальное состояние и другие  {126}  дополнительные данные мультиверса определяются какими-то, ещё не­известными законами физики).

Логически возможный — самосогласованный. Виртуальная реальность — любая ситуация, в которой пользо­ватель ощущает нахождение в точно определенной среде.

Репертуар — репертуар генератора виртуальной реальности — это набор сред, ощущение нахождения пользователя в которых может создать генератор.

Изображение — что-либо, рождающее ощущения. Точность — изображение является точным настолько, насколько создаваемые им ощущения близки к тем, которые нужно было создать. Виртуальная среда является точной настолько, насколько она способна отреагировать должным образом на каждое возможное действие поль­зователя.

Совершенная точность — точность настолько высокая, что пользователь не может отличить изображение или виртуальную сре­ду от реальной.

РЕЗЮМЕ

Виртуальная реальность — это не просто технология моделирова­ния поведения физических сред с помощью компьютеров. Возможность существования виртуальной реальности — важная черта структуры реальности. Это основа не только вычислений, но и человеческого во­ображения, внешних ощущений, науки и математики, искусства и вы­мысла.


Каковы же наивысшие пределы — полный масштаб — виртуальной реальности (а следовательно, вычисления, науки, воображения и всего остального)? В следующей главе мы увидим, что в одном отношении масштаб виртуальной реальности безграничен, а в другом — чрезмерно ограничен.  {127} 




ГЛАВА 6

Универсальность и пределы вычислений

Сердце генератора виртуальной реальности — его компьютер, и во­прос о том, какие среды можно передать в виртуальной реальности, в конечном итоге, должен сводиться к вопросу о том, какие вычисле­ния можно осуществить. Даже сегодня репертуар генераторов вирту­альной реальности ограничен как их генераторами изображений, так и их компьютерами. Как только к генератору виртуальной реальнос­ти подключают новый, более быстрый компьютер, с бóльшим объемом памяти и более современным аппаратным обеспечением обработки из­ображений, репертуар генератора расширяется. Но будет ли это продол­жаться непрерывно или, в конце концов, мы столкнемся с абсолютной универсальностью, чего, как я говорил, нам следует ожидать в случае с генераторами изображений? Другими словами, существует ли отдель­ный генератор виртуальной реальности, который можно построить раз и навсегда и запрограммировать для передачи любой среды, которую способен ощутить человеческий разум?

Как и в случае с генераторами изображений под вышесказанным мы не подразумеваем, что этот единственный генератор виртуальной реальности мог бы содержать в себе точные определения всех логичес­ки возможных сред. Мы только имеем в виду, что этот генератор можно было бы запрограммировать для передачи любой логически возможной среды. Можно предусмотреть кодирование таких программ, например, на магнитных дисках. Чем выше сложность среды, тем больше понадо­бится дисков для хранения соответствующей программы. Таким обра­зом, для передачи сложных сред машина должна обладать механизмом (который я уже описал для универсального генератора изображений), способным прочитать неограниченное количество дисков. В отличие от генератора изображений генератору виртуальной реальности может по­надобиться увеличение объема «рабочей памяти» для хранения резуль­татов промежуточных вычислений. Для этого можно предусмотреть наличие чистых дисков. И снова энергия, чистые диски и обслужива­ние, необходимые машине, не препятствуют тому, чтобы считать эту  {128}  машину «отдельной» при условии, что все эти действия не равносильны изменению конструкции машины и не запрещены законами физики.

В этом смысле, в принципе, можно было бы рассмотреть компьютер с эффективно неограниченной емкостью памяти. Но нельзя рассматри­вать компьютер с неограниченной скоростью вычислений. Компьютер определенной конфигурации всегда будет иметь фиксированную макси­мальную скорость, которую могут увеличить только изменения этой конфигурации. Следовательно, данный генератор виртуальной реаль­ности не сможет выполнять неограниченное количество вычислений в единицу времени. Разве это не будет ограничивать его репертуар? Если среда настолько сложна, что вычисление того, что должен уви­деть пользователь через секунду, занимает у машины больше секунды, каким образом машина сможет точно передать эту среду? Для дости­жения универсальности нам необходим следующий технологический трюк.

Чтобы расширить свой репертуар до максимально физически воз­можных пределов, генератору виртуальной реальности пришлось бы взять под контроль ещё одно свойство сенсорной системы пользователя: скорость обработки информации мозгом пользователя. Если бы челове­ческий мозг был подобен электронному компьютеру, достаточно было бы изменить частоту испускания синхронизирующих импульсов его «генератором». Несомненно, «генератор синхронизирующих импульсов» мозга контролировать не так просто. Но в принципе это не проблема. Мозг — конечный физический объект, и все его функции — физичес­кие процессы, которые, в принципе, можно замедлить или остановить. Предельный генератор виртуальной реальности должен обладать такой способностью.

Для достижения совершенной передачи сред, требующей множест­ва вычислений, генератор виртуальной реальности должен был бы дей­ствовать приблизительно следующим образом. Каждый сенсорный нерв физически способен передавать сигналы с определенной максимальной частотой, поскольку возбудившаяся нервная клетка сможет вновь воз­будиться только через одну миллисекунду. Следовательно, сразу после возбуждения определенного нерва у компьютера есть, по крайней ме­ре, одна миллисекунда, чтобы решить, возбудится ли этот нерв снова и когда это произойдет. Если он вычислил решение, скажем, за половину миллисекунды, то в корректировке скорости работы мозга нет необ­ходимости, и компьютер просто возбуждает этот нерв в нужное вре­мя.  {129}  В противном случае, компьютер заставляет мозг замедлить (или при необходимости остановить) свою работу до завершения вычисле­ния следующего события: затем компьютер восстанавливает нормаль­ную скорость работы мозга. Как бы это почувствовал пользователь? По определению никак. Пользователь получил бы ощущение нахожде­ния в среде, точно определенной в программе, без каких бы то ни было замедлений, остановок или повторных пусков. К счастью, генератору виртуальной реальности не нужно заставлять мозг работать быстрее нормального: из-за этого, в конце концов, возникли бы принципиальные проблемы, потому что, кроме всего прочего, ни один сигнал не может перемещаться быстрее скорости света.

Этот метод позволяет нам заранее определить произвольно услож­ненную среду, для моделирования которой потребуется любой конеч­ный объем вычислений, и получить ощущение нахождения в этой сре­де при любой субъективной скорости и уровне детализации, которые способен усвоить наш разум. Если необходимых вычислений слишком много, чтобы компьютер смог выполнить их в течение субъективно воспринимаемого времени, ощущение будет естественным, но пользо­ватель заплатит за его сложность реально потерянным временем. Поль­зователь может выйти из генератора виртуальной реальности после пятиминутного, на его субъективный взгляд, пребывания там и обна­ружить, что в физической реальности прошли годы.

Пользователь, мозг которого отключается на любой период време­ни, а потом снова включается, будет ощущать непрерывное пребывание в какой-то среде. Но пользователь, мозг которого отключился навсегда, с момента его отключения ничего не чувствует. Это значит, что про­грамма, которая в какой-то момент может отключить мозг пользовате­ля и уже никогда не включить его, не создает среду, которую пользова­тель почувствовал бы и, следовательно, не может считаться адекватной программой для генератора виртуальной реальности. Но программа, которая в конечном итоге всегда включает мозг пользователя, позво­ляет генератору виртуальной реальности передавать какую-то среду. Даже программа, которая вообще не испускает нервных сигналов пе­редает темную безмолвную среду абсолютной сенсорной изоляции.

В поисках пределов виртуальной реальности мы проделали очень долгий путь от того, что осуществимо сегодня, или даже от того, что находится на обозримом горизонте технологии. Поэтому я ещё раз хочу подчеркнуть, что технологические трудности не мешают нашим настоящим  {130}  целям. Мы не исследуем, какие виды генераторов виртуальной реальности можно построить или какие виды генераторов виртуальной реальности когда-нибудь построят инженеры. Мы изучаем, что позво­ляют, а что не позволяют законы физики в области виртуальной реаль­ности. Причина важности всего этого никак не связана с перспективой создания лучших генераторов виртуальной реальности. Причина в том, что отношение между виртуальной реальностью и «обычной» реальнос­тью — часть глубокого, неожиданного устройства мира, о котором и рассказывает эта книга.

Рассматривая всевозможные трюки — стимуляцию нервов, оста­новку и запуск мозга и т. д. — мы смогли представить физически воз­можный генератор виртуальной реальности, репертуар которого охва­тывает весь сенсорный диапазон. Кроме того, этот генератор полностью интерактивен и не ограничен ни скоростью, ни емкостью памяти сво­его компьютера. Существует ли что-либо, что не входит в репертуар такого генератора виртуальной реальности? Возможно ли, что этот ре­пертуар мог бы стать набором всех логически возможных сред? Нет. Репертуар даже этой фантастической машины резко ограничен хотя бы тем, что она являет собой физический объект. Она даже поверхностно не затрагивает то, что возможно логически, и сейчас я докажу это.

Основная идея такого доказательства — известного как диаго­нальное доказательство — предшествует идее виртуальной реальнос­ти. Впервые это доказательство использовал математик девятнадца­того века Георг Кантор, чтобы доказать, что существуют бесконечно большие величины, превышающие бесконечность натуральных чисел (1,2,3...). Такое же доказательство лежит в основе современной тео­рии вычисления, разработанной Аланом Тьюрингом и другими в 1930-х годах. Им также пользовался Курт Гёдель для доказательства своей зна­менитой «теоремы о неполноте», о которой я более подробно расскажу в главе 10.

Каждая среда в репертуаре нашей машины формируется некой про­граммой, заложенной в её компьютер. Представьте набор всех адекват­ных программ для этого компьютера. С точки зрения физики каждая из этих программ точно определяет конкретный набор значений фи­зических переменных на дисках или других носителях, где записана компьютерная программа. Из квантовой теории нам известно, что все такие переменные квантуются, и, следовательно, независимо от того, как работает компьютер, набор возможных программ дискретен.  {131}  Зна­чит, каждую программу можно выразить как конечную последователь­ность символов в дискретном коде или на языке компьютера. Сущест­вует бесконечное множество таких программ, но каждая из них может содержать только конечное количество символов. Так происходит по­тому, что символы — это физические объекты, созданные из вещест­ва в узнаваемых конфигурациях, а бесконечное количество символов создать невозможно. Как я поясню в главе 10, эти интуитивно оче­видные физические требования: что программы должны квантоваться, что каждая должна состоять из конечного числа символов и выпол­няться последовательно по этапам, — гораздо более материальны, чем кажутся. Они являются единственными следствиями законов физики, которые необходимы в качестве исходных данных доказательства, но их достаточно, чтобы наложить резкие ограничения на репертуар лю­бой физически возможной машины. Другие физические законы могут наложить даже бóльшие ограничения, но они никак не повлияют на выводы этой главы.

Теперь давайте представим, что из этого бесконечного набора воз­можных программ составлен бесконечно длинный нумерованный спи­сок: Программа 1, Программа 2 и т. д. Эти программы можно распо­ложить, например, в «алфавитном порядке» по отношению к символам, в которых они выражены. Поскольку каждая программа формирует среду, этот список можно рассматривать и как список всех сред из репертуара данной машины; мы можем называть их Среда 1, Среда 2 и т. д.  Может случиться и так, что некоторые среды будут повторяться в этом списке, потому что две разные программы в действительности могут осуществлять одинаковые вычисления, но это никак не повли­яет на доказательство. Важно, что каждая среда из репертуара нашей машины должна появиться в списке хотя бы один раз.

Виртуальная среда может быть как ограниченной, так и неогра­ниченной в видимом физическом размере и видимой длительности. Виртуальным домом, созданным архитектором, например, можно бу­дет пользоваться сколько угодно, но объем этой среды, вероятно, будет ограничен. Видеоигра может выделить пользователю только ограничен­ное время для игры до её окончания или передать игру-вселенную не­ограниченных размеров, предоставить неограниченное количество ис­следований и закончиться только тогда, когда её закончит сам пользо­ватель. Для упрощения доказательства мы будем рассматривать только непрерывно работающие программы. Это не такое уж большое  {132}  ограничение, потому что, если программа останавливается, то мы всегда можем рассматривать отсутствие ответной реакции с её стороны как среду сенсорной изоляции.

Мне хотелось бы определить класс логически возможных сред, которые я назову средами Кантгоуту[9], частично в честь Кантора (Cantor), Геделя (Gödel) и Тьюринга (Turing), а частично по причине, которую я вкратце объясню. Эти среды я определяю следующим об­разом. В течение первой субъективной минуты среда Кантгоуту ведет себя не так, как Среда 1 (созданная Программой 1 нашего генератора). Не важно, как она себя ведет, важно, что пользователь ощущает отли­чие её поведения от поведения Среды 1. В течение второй минуты эта среда ведет себя отлично от Среды 2 (хотя сейчас она может вести се­бя как Среда 1). В течение третьей минуты она ведет себя отлично от Среды 3 и т. д. Любую среду, которая удовлетворяет этим условиям, я назову средой Кантгоуту.

Далее, поскольку среда Кантгоуту не ведет себя в точности как Среда 1, она не может быть Средой 1; поскольку она не ведет себя в точности как Среда 2, она не может быть Средой 2. Поскольку ра­но или поздно она точно будет вести себя не так, как Среда 3, Среда 4 и любая другая среда из списка, значит, она не может быть ни од­ной из этих сред. Однако этот список содержит все среды, созданные каждой возможной программой для этой машины. Следовательно, ни одна среда Кантгоуту не входит в репертуар машины. Среды Кантгоу­ту — это среды, в которые мы не можем пойти[9a], используя генератор виртуальной реальности.

Ясно, что существует невообразимо много сред Кантгоуту, пото­му что определение оставляет огромную свободу выбора возможного поведения этих сред, единственное ограничение состоит в том, что их поведение должно изменяться по прошествии каждой минуты. Мож­но доказать, что для каждой среды из репертуара данного генератора виртуальной реальности существует бесконечно много сред Кантгоу­ту, которые генератор не может передать. Да и места для расширения репертуара путем использования ряда различных генераторов вирту­альной реальности не так уж много. Допустим, что у нас есть сто та­ких генераторов, причем каждый (в целях доказательства) имеет свой  {133}  репертуар. Тогда весь набор генераторов вместе с программируемой системой управления, определяющей, какие из них нужно использо­вать для обработки данной программы, — это просто более крупный генератор виртуальной реальности. Такой генератор подходит к приве­денному мной доказательству, поэтому, для каждой среды, которую он может передать, будет существовать бесконечно много сред которые он передать не сможет. Более того, допущение о том, что различные ге­нераторы виртуальной реальности могут иметь различные репертуары, оказывается чрезмерно оптимистичным. Как мы скоро увидим все до­статочно сложные генераторы виртуальной реальности имеют по сути один и тот же репертуар.

Таким образом, наш гипотетический проект создания предельно­го генератора виртуальной реальности, который столь уверенно про­двигался вперед, внезапно наткнулся на кирпичную стену. Какие бы усовершенствования ни произошли в ближайшем будущем, репертуар всей технологии виртуальной реальности никогда не выйдет за пределы определенного набора сред. Следует признать, что этот набор бесконеч­но велик и весьма разнообразен по сравнению с опытом, предшеству­ющим появлению технологии виртуальной реальности. Тем не менее это всего лишь бесконечно малая частица набора всех логически воз­можных сред.

На что было бы похоже пребывание в среде Кантгоуту? Хотя за­коны физики и не позволяют нам оказаться в такой среде, логически это возможно, а потому вопрос об ощущениях правомерен. Безусловно она не смогла бы дать нам никаких новых ощущений, поскольку уни­версальный генератор изображений является возможным и считается частью нашего высокотехнологичного генератора виртуальной реаль­ности. Таким образом, среда Кантгоуту показалась бы нам загадочной только после того, как мы оказались в ней и поразмышляли над ре­зультатами. Это было бы примерно так. Допустим, что вы фанат вир­туальной реальности из далекого будущего с ультра-технологиями. Вы пресытились: вам кажется, что вы уже испробовали все интересное. Но вдруг однажды появляется джинн и заявляет, что он может перенести вас в среду Кантгоуту. Вы сомневаетесь, но согласны проверить его способности. Вас мгновенно переносят в эту среду. После нескольких экспериментов вам кажется, что вы узнаете её: она реагирует как од­на из ваших любимейших сред, которая на вашей домашней системе виртуальной реальности создается при запуске программы под номером  {134}  X. Однако вы продолжаете экспериментировать, и, в конце концов, по окончании минуты Х реакция среды становится весьма отличной от той, которую могла бы предложить Среда X. Тогда вы отказыва­етесь от мысли о том, что это Среда X. Потом вы можете заметить, что все происшедшее очень напоминает другую среду, которую можно передать, — Среду Y. Но по истечении минуты Y вы понимаете, что вновь ошиблись. Характеристика среды Кантгоуту просто в следую­щем: сколько бы вы ни гадали, какой бы сложной ни была программа, которую вы приняли за программу, передающую именно эту среду, вы всегда будете ошибаться, потому что ни одна программа не передаст её ни на вашем генераторе виртуальной реальности, ни на каком-то другом.

Рано или поздно вам придется завершить свою проверку. К тому времени, вы, может быть, справедливо решите признать способности джинна. Я не хочу сказать, что вы когда-либо сможете доказать, что были в среде Кантгоуту, поскольку всегда существует даже более слож­ная программа, которую мог обрабатывать джинн, и которая могла бы соответствовать полученным вами ощущениям. То, о чем я сейчас го­ворил, всего лишь общая черта виртуальной реальности, — ощущение не может доказать пребывание человека в данной среде, будь это Цен­тральный Корт Уимблдона или среда типа Кантгоуту.

В любом случае не существует таких джиннов и таких сред. Таким образом, мы должны сделать вывод, что физика не позволяет реперту­ару генератора виртуальной реальности приблизиться к тому огром­ному репертуару, который позволяет одна логика. Насколько же велик может быть этот репертуар?

Поскольку мы не можем надеяться на передачу всех логически возможных сред, давайте рассмотрим меньшую (но в конечном счете более интересную) степень универсальности. Давайте определим уни­версальный генератор виртуальной реальности как генератор, репер­туар которого содержит репертуары всех остальных физически воз­можных генераторов виртуальной реальности. Может ли существовать такая машина? Может. Размышление о фантастических устройствах, основанных на стимуляции нервов, управляемой компьютером, дела­ет это очевидным — в действительности, почти слишком очевидным. Такую машину можно было бы запрограммировать на воспроизведе­ние характеристики любой конкурирующей с ней машины. Она смогла бы вычислить реакцию той машины при  {135}  любой данной программе, при любом поведении пользователя и, следовательно, смогла бы передать эти реакции с совершенной точностью (с точки зрения любого данного пользователя). Я говорю, что это «почти слишком очевидно», потому что здесь содержится важное допущение относительно того, на выполнение каких действий можно запрограммировать предложенное устройство, точнее, его компьютер: при наличии подходящей программы, достаточ­ного времени и средств хранения информации компьютер смог бы под­считать результат любого вычисления, выполненного любым другим компьютером, в том числе и компьютером конкурирующего генерато­ра виртуальной реальности. Таким образом, возможность реализации универсального генератора виртуальной реальности зависит от сущест­вования универсального компьютера — отдельной машины, способной вычислить все, что только можно вычислить.

Как я уже сказал, такая универсальность была впервые изучена не физиками, а математиками. Они пытались создать точное интуитивное понятие «решения» (или «вычисления», или «доказательства») чего-либо в математике. Они не учитывали, что математическое вычисление — это физический процесс (в частности, как я уже объяснил, процесс пе­редачи в виртуальной реальности), поэтому, путем математического рассуждения невозможно определить, что можно вычислить матема­тически, а что нельзя. Это полностью зависит от законов физики. Но вместо того чтобы пытаться получить какие-то результаты из законов физики, математики сформулировали абстрактные модели «решения» и определили «вычисление» и «доказательство» на основе этих моделей. (Я вернусь к этой интересной ошибке в главе 10). Вот так и получилось, что за несколько месяцев 1936 года три математика, Эмиль Пост, Алонцо Черч и, главное, Алан Тьюринг независимо друг от друга создали первые абстрактные схемы универсальных компьютеров. Каждый из них считал, что его «вычислительная» модель действительно правиль­но формализовала традиционное интуитивное понятие математическо­го «вычисления». Следовательно, каждый из них также полагал, что его модель эквивалентна (имеет тот же репертуар) любой другой разумной формализации подобной интуиции. Сейчас это известно как гипотеза Черча—Тьюринга.

Модель вычислений Тьюринга и концепция природы задачи, кото­рую он решал, была наиболее близка к физике. Его абстрактный ком­пьютер, машина Тьюринга, представлял собой бумажную ленту, разде­ленную на квадраты, причем на каждом квадрате был написан один из  {136}  конечного числа легко различимых символов. Вычисление осуществля­лось следующим образом: проверялся один квадрат, затем лента пере­мещалась вперед или назад, стирая или записывая один из символов в соответствии с простыми недвусмысленными правилами. Тьюринг доказал, что один конкретный компьютер такого типа, универсальная машина Тьюринга, имеет объединенный репертуар всех других машин Тьюринга. Он предположил, что этот репертуар в точности состоит из «каждой функции, которую естественно посчитали бы вычислимой». Он имел в виду вычислимой математиками.

Однако математики — это достаточно нетипичные физические объекты. Почему мы должны допускать, что их передача при выполне­нии вычислений — предел вычислительных задач? Оказывается, что не должны. Как я объясню в главе 9, квантовые компьютеры могут вы­полнять вычисления, которые ни один математик (человек) никогда, даже в принципе, не сможет выполнить. В работе Тьюринга неявно вы­ражено его ожидание, что то, что «естественно сочли бы вычислимым», могло бы, по крайней мере в принципе, быть вычисленным и в природе. Это ожидание эквивалентно более сильной физической версии гипоте­зы Черча-Тьюринга. Математик Роджер Пенроуз предложил назвать его принципом Тьюринга:

Принцип Тьюринга (для абстрактных компьютеров, имитиру­ющих физические объекты)

Существует абстрактный универсальный компьютер, репертуар которого включает любые вычисления, которые может осуществить любой физически возможный объект.

Тьюринг считал, что «универсальный компьютер», о котором идет речь, — это универсальная машина Тьюринга. Чтобы принять во вни­мание более широкий репертуар квантовых компьютеров, я сформу­лировал принцип в такой форме, которая точно не определяет, какой частный «абстрактный компьютер» выполняет вычисления.

Приведенным мной доказательством существования сред Кантго­уту я, в сущности, обязан Тьюрингу. Как я уже сказал, он не думал непосредственно о виртуальной реальности, но «среда, которую мож­но передать», относится к классу математических вопросов, ответ на которые можно вычислить. Эти вопросы вычислимы. Все остальные во­просы — вопросы, ответы на которые невозможно вычислить, называ­ются невычислимыми. Если вопрос невычислим, это не значит, что на  {137}  него нет ответа или что этот ответ в каком-то смысле плохо определен или сомнителен. Напротив, это значит, что у этого вопроса определенно есть ответ. Дело просто в том, что физически, даже в принципе не су­ществует способа получить этот ответ (или точнее, поскольку человек всегда может высказать удачную, не поддающуюся проверке догадку, доказать, что это и есть ответ). Например, простые двойники — это два простых числа, разность которых равна 2, например, 3 и 5 или 11 и 13. Математики тщетно пытались ответить на вопрос, существует ли бесконечно много таких пар или их количество всё же конечно. Неиз­вестно даже, вычислим ли этот вопрос. Предположим, что нет. Это все равно, что сказать, что ни один человек и ни один компьютер никогда не смогут создать доказательство существования конечного или беско­нечного количества простых двойников. Но даже в этом случае ответ на этот вопрос существует: можно сказать определенно, что есть либо наибольшая пара простых двойников, либо бесконечно большое коли­чество таких пар; другого варианта не существует. Вопрос остается четко определенным, несмотря на то, что, возможно, мы никогда не узнаем ответа.

Что касается виртуальной реальности: ни один физически возмож­ный генератор виртуальной реальности не сможет передать среду, в ко­торой ответы на невычислимые вопросы даются по запросу пользова­теля. Такие среды относятся к средам Кантгоуту. Верно и обратное: каждая среда Кантгоуту соответствует классу математических вопро­сов («что произошло бы далее в среде, определенной так-то и так-то?»), на которые физически невозможно дать ответ.

Несмотря на то, что невычислимых вопросов бесконечно больше, чем вычислимых, они относятся к разряду эзотерических. Это не слу­чайно. Так происходит потому, что разделы математики, которые мы склонны считать в меньшей степени эзотерическими, — это разделы, отражение которых мы видим в поведении физических объектов в зна­комых ситуациях. В таких случаях мы часто можем воспользоваться этими физическими объектами, чтобы ответить на вопросы о соответ­ствующих математических отношениях. Например, мы можем считать на пальцах, потому что физика пальцев естественным образом имити­рует арифметику целых чисел от нуля до десяти.

Вскоре была доказана идентичность репертуаров трех очень раз­ных абстрактных компьютеров, определенных Тьюрингом, Черчем и Постом. Таковыми же являются и репертуары всех абстрактных  {138}  моделей математического вычисления, которые с тех пор предлагались. Это считается аргументом в поддержку гипотезы Черча-Тьюринга и универсальности универсальной машины Тьюринга. Однако, вычисли­тельная мощность абстрактных машин не имеет никакого отношения к тому, что вычислимо в реальности. Масштаб виртуальной реальнос­ти и её расширенное применение для постижимости природы и других аспектов структуры реальности зависит от того, реализуемы ли необ­ходимые компьютеры физически. В частности, любой настоящий уни­версальный компьютер должен быть физически реализуем сам по себе. Это ведет к более определенному варианту принципа Тьюринга:

Принцип Тьюринга (для физических компьютеров, имитирую­щих друг друга)

Возможно построить универсальный компьютер: машину, которую можно запрограммировать для выполнения любого вычисления, которое может выполнить любой другой физический объект.

Следовательно, если бы универсальный компьютер управлял уни­версальным генератором изображений, то получившаяся в результате машина стала бы универсальным генератором виртуальной реальнос­ти. Другими словами, справедлив и следующий принцип:

Принцип Тьюринга (для генераторов виртуальной реальности, передающих друг друга)

Возможно построить генератор виртуальной реальности, реперту­ар которого включает репертуар каждого другого физически возможного генератора виртуальной реальности.

Далее, любую среду можно передать с помощью генератора вирту­альной реальности некоторого рода (например, всегда можно рассмат­ривать копию этой самой среды как генератор виртуальной реальности с очень маленьким репертуаром). Таким образом, из этого варианта принципа Тьюринга также следует, что любую физически возможную среду можно передать с помощью универсального генератора вирту­альной реальности. Следовательно, чтобы выразить стабильную самоподобность, которая существует в структуре реальности, охватываю­щей не только вычисления, но и все физические процессы, принцип Тьюринга можно сформулировать во всеобъемлющей форме:

Принцип Тьюринга

Возможно построить генератор виртуальной реальности, реперту­ар которого включает каждую физически возможную среду.  {139} 

Это наиболее жизнестойкая форма принципа Тьюринга. Она не только говорит нам, что различные части реальности могут походить друг на друга. Она говорит нам, что отдельный физический объект, который можно построить раз и навсегда (не считая обслуживания и при необходимости поставки дополнительной памяти), с неограничен­ной точностью может выполнять задачу описания или имитирования любой другой части мультиверса. Набор всех вариантов поведения и реакций одного этого объекта в точности отображает все варианты по­ведения и реакции всех остальных физически возможных объектов и процессов.

Это просто род самоподобности, которая необходима, если мои на­дежды на то, что структура реальности должна быть действительно единой и понятной, оправданны. Если законы физики и их примени­мость к любому физическому объекту или процессу должны быть по­няты, должна существовать возможность их воплощения в другом фи­зическом объекте — объекте, который будет их знать. Также необходи­мо, чтобы процессы, способные создать такое знание, были физически возможны. Такие процессы называются наукой. Наука зависит от экс­периментальных проверок: физической передачи предсказаний закона и её сравнения с реальностью (ее передачей). Она также зависит от объяснений, и для того, чтобы суметь передать их в виртуальной ре­альности, необходимы сами абстрактные законы, а не просто их предсказательное содержание. Это серьезный запрос, но реальность удов­летворяет его. То есть законы физики удовлетворяют его. Законы фи­зики, согласуясь с принципом Тьюринга, дают тем же самым законам физическую возможность стать физическими объектами. Таким обра­зом, можно сказать, что законы физики ручаются за свою собственную постижимость.

Поскольку построить универсальный генератор виртуальной ре­альности физически возможно, в некоторых вселенных он действитель­но должен быть построен. Здесь я должен сделать предостережение. Как я объяснил в главе 3, мы можем нормально определить физически возможный процесс как процесс, который действительно происходит где-то в мультиверсе. Но, строго говоря, универсальный генератор вир­туальной реальности — это граничный случай, требующий для своего функционирования сколь угодно больших ресурсов. Поэтому, говоря «физически возможный», мы в действительности подразумеваем, что в мультиверсе существуют генераторы виртуальной реальности,  {140}  репертуары которых сколь угодно близки к набору всех физически воз­можных сред. Подобным образом, поскольку законы физики можно пе­редать, где-то их передают. Таким образом, из принципа Тьюринга (более определенной его формы, которую я доказал) следует, что за­коны физики не просто ручаются за свою собственную постижимость в каком-то абстрактном смысле — постижимость абстрактными уче­ными, как это было. Их следствием является физическое существование где-то в мультиверсе категорий, которые понимают их сколь угодно хо­рошо. К этому следствию я вернусь в следующих главах.

Сейчас я возвращаюсь к вопросу, который задал в предыдущей гла­ве, а именно: правда ли то, что если бы наша передача в виртуальной реальности, основанная на неправильных законах физики, была един­ственным источником получения знаний, нам следовало бы ожидать изучения неправильных законов. Первое, что мне хотелось бы выде­лить, — это то, что виртуальная реальность, основанная на неправиль­ных законах, и есть наш единственный источник получения знаний! Как я уже сказал, все наши внешние ощущения связаны с виртуаль­ной реальностью, созданной нашим мозгом. А поскольку наши концеп­ции и теории (будь они врожденные или приобретенные) никогда не совершенны, все наши передачи на самом деле неточны. То есть, они дают нам ощущение среды, которая значительно отличается от среды, в которой мы действительно находимся. Миражи и другие оптические иллюзии — тому примеры. Далее, мы ощущаем, что Земля под наши­ми ногами находится в состоянии покоя, несмотря на то, что в дейст­вительности она совершает быстрое и сложное движение. Кроме того, мы ощущаем отдельную вселенную и отдельный пример нашего созна­тельного «я», тогда как в реальности этого много. Но эти неточные и вводящие в заблуждение ощущения не доказывают ложность научного рассуждения. Напротив, такие недостатки являются отправной точкой.

Нам приходится решать задачи о физической реальности. Если ока­жется, что все это время мы просто изучали программирование кос­мического планетария, то это будет просто означать, что мы изучали меньшую часть реальности, чем нам казалось. Ну и что? Такое проис­ходило много раз в истории науки, когда наши горизонты расширялись за пределы Земли, включая солнечную систему, нашу галактику, дру­гие галактики, скопления галактик и т. д. и, конечно, параллельные все­ленные. Еще одно подобное расширение может произойти завтра; оно действительно может произойти в соответствии с одной из бесконеч­ного  {141}  множества возможных теорий, а может и не произойти никогда. Логически мы должны согласиться с солипсизмом и родственными ему доктринами в том, что изучаемая нами реальность может быть не­представительной частью большей, недостижимой или непостижимой структуры. Но мое общее опровержение таких доктрин показывает, что нерационально основываться на возможности. Следуя Оккаму, мы при­мем эти теории тогда и только тогда, когда они обеспечат объяснения лучшие, чем объяснения их более простых конкурентов.

Однако, существует вопрос, который мы всё ещё можем задать. До­пустим, кого-либо заключили в небольшую, непредставительную часть нашей реальности, например, в универсальный генератор виртуальной реальности, запрограммированный по неправильным законам физики. Что могли бы узнать эти пленники о нашей внешней реальности? На первый взгляд, кажется невозможным, что они могли бы открыть хоть что-нибудь. Может показаться, что самое большее, что они могли бы открыть, — это законы управления, т. е. компьютерную программу, управляющую их заключением.

Но это не так! Мы снова должны принять во внимание, что если эти пленники — ученые, то они будут искать как предсказания, так и объяснения. Другими словами, они не будут удовлетворены простым знанием программы, управляющей местом их заключения: они захотят объяснить происхождение и свойства различных объектов (включая и самих себя), наблюдаемых ими в той реальности, в которой они жи­вут. Но в большинстве сред виртуальной реальности таких объяснений не существует, поскольку переданные объекты возникают не там, они создаются во внешней реальности. Предположим, что вы играете в вир­туальную видео игру. Для упрощения допустим, что, по сути, это игра в шахматы (возможно, это игра от первого лица, в которой вы играете роль короля). Вы воспользуетесь нормальными методами науки, чтобы открыть «физические законы» этой среды и следствия, вытекающие из них. Вы узнаете, что шах, мат и пат — «физически» возможные явле­ния (т. е. возможные при вашем лучшем понимании действия среды), но положение с девятью белыми пешками «физически» невозможно. Как только вы поймете законы достаточно хорошо, вы заметите, что шах­матная доска — слишком простой объект, чтобы, например, думать, и, следовательно, ваши собственные мыслительные процессы не могут находиться под управлением только законов шахмат. Подобным обра­зом, вы могли бы сказать, что за время любого количества шахматных  {142}  партий фигуры никогда не создадут самовоспроизводящиеся конфигу­рации. И если уж жизнь не может развиться на шахматной доске, то что говорить о развитии там разума. Следовательно, вы могли бы также сделать вывод, что ваши собственные мыслительные процессы не могли возникнуть во вселенной, в которой вы себя обнаружили. Таким обра­зом, даже если бы вы прожили всю свою жизнь в переданной среде и не имели бы своих собственных воспоминаний о внешнем мире, на кото­рых можно было бы основать объяснения, ваше знание не ограничилось бы этой средой. Вы бы знали, что несмотря на то, что вселенная вроде бы имеет определенный вид и подчиняется определенным законам, вне её должна существовать более обширная вселенная, которая подчиняет­ся другим законам физики. И вы могли бы даже догадаться о некоторых отличиях этих более обширных законов от законов шахматной доски.

Артур К. Кларк однажды заметил, что «любую достаточно перспек­тивную технологию невозможно отличить от волшебства». Это правда, но вводит в некоторое заблуждение. Такое заявление делается с точ­ки зрения донаучного мыслителя и являет собой ошибочный обходной путь. В действительности, для любого, кто понимает, что такое вир­туальная реальность, даже настоящее волшебство будет неотличимо от технологии, поскольку в постижимой реальности нет места волшебст­ву. Все, что кажется непостижимым, наука рассматривает просто как свидетельство того, что есть что-то, что мы ещё не поняли, будь это магический трюк, перспективная технология или новый закон физики.

Рассуждение, исходящее из условия своего собственного сущест­вования, называется «антропным». Хотя оно некоторым образом при­менимо в космологии, обычно его необходимо дополнять самостоятель­ными допущениями о природе «себя», чтобы получить определенные выводы. Однако антропное рассуждение — не единственный способ, с помощью которого обитатели нашего гипотетического виртуального места заключения могли бы получить знание о внешнем мире. Любое из развившихся объяснений их небольшого мира могло бы моментально достигнуть внешней реальности. Например, сами правила шахмат, со­держащие то, что может осознать внимательный игрок, — это «ископа­емое свидетельство» того, что эти правила эволюционировали: сущест­вуют «незаурядные» ходы, например, рокировка и взятие на проходе, которые увеличивают сложность правил, но и совершенствуют игру. Объясняя эту сложность, справедливо сделать вывод, что правила шах­мат не всегда были такими, как сейчас.  {143} 

В попперианской схеме всего объяснения всегда ведут к новым за­дачам, которые, в свою очередь, требуют новых объяснений. Если через некоторое время пленники не смогут усовершенствовать существую­щие у них объяснения, они, конечно, могут сдаться, возможно, оши­бочно заключив, что объяснения вообще недоступны. Но если они не сдадутся, то они будут размышлять над теми аспектами окружающей их среды, которые, как им кажется, не имеют адекватного объясне­ния. Таким образом, если бы тюремщики высоких технологий хотели быть уверенными, что переданная ими среда, вечно будет заставлять их пленников думать, что внешнего мира не существует, они просто загрузили бы их работой по горло. Чем более долгую иллюзию они хотели создать, тем более изощренной должна была быть программа. Недостаточно просто оградить пленников от наблюдения внешнего ми­ра. Переданная среда должна быть такой, чтобы никакие объяснения того, что находится внутри, никогда не потребовали бы от пленника формулировки того, что находится снаружи. Другими словами, эта сре­да должна быть самосодержащей во всем, что касается объяснений. Но Я сомневаюсь, что хоть какая-то часть реальности, не говоря уже о всей реальности, обладает таким свойством.

ТЕРМИНОЛОГИЯ

Универсальный генератор виртуальной реальности — это генератор, репертуар которого содержит каждую физически возмож­ную среду.

Среды Кантгоуту — логически возможные среды, которые не сможет передать ни один физически возможный генератор виртуаль­ной реальности.

Диагональное доказательство — вид доказательства, при кото­ром представляют список категорий, а затем используют этот список для создания родственной категории, которой не может быть в этом списке.

Машина Тьюринга — одна из первых абстрактных моделей вы­числения.

Универсальная машина Тьюринга — машина Тьюринга с ре­пертуаром, содержащим репертуары всех машин Тьюринга.

Принцип Тьюринга (в самой жизнестойкой форме) — построить Универсальный генератор виртуальной реальности физически возможно.  {144}  При сделанных мной допущениях это означает, что не существует верхней границы универсальности генераторов виртуальной реальнос­ти, которые действительно будут построены где-то в мультиверсе.

РЕЗЮМЕ

Диагональное доказательство показывает, что подавляющее боль­шинство логически возможных сред невозможно передать в виртуаль­ной реальности. Я назвал такие среды средами Кантгоуту. Тем не ме­нее, в физической реальности существует постижимая самоподобность. выраженная в принципе Тьюринга: можно построить генератор вирту­альной реальности, репертуар которого включает каждую физически возможную среду. Таким образом, отдельный физический объект, кото­рый можно построить, способен имитировать все варианты поведения и реакции любого другого физически возможного объекта или процес­са. Именно это делает реальность постижимой.


Это также делает возможной эволюцию живых организмов. Одна­ко прежде чем обсуждать теорию эволюции, четвертую основную нить объяснения структуры реальности, я должен сделать краткое отступ­ление в эпистемологию.  {145} 




ГЛАВА 7

Беседа о доказательстве
(или «Дэвид и Крипто-индуктивист»)

Я считаю, что я решил насущную философскую проблему: задачу индукции.

Карл Поппер


Как я объяснил в предисловии, основная цель этой книги не за­щита четырех основных нитей, а исследование того, что говорят эти нити и какого рода реальность они описывают. Именно поэтому я ни­коим образом не обращаюсь к враждебным теориям. Тем не менее, существует одна враждебная теория, а именно: здравый смысл, — под­робного опровержения которой требует мой разум, когда она вступает в конфликт с моими утверждениями. Поэтому в главе 2 я в пух и прах разбил логичную идею существования одной вселенной. В главе 11 та же участь ожидает идею о том, что время «течет» или что наше созна­ние «движется» во времени. В главе 3 я раскритиковал индуктивизм, разумную идею о том, что мы создаем теории о физическом мире, обоб­щая результаты наблюдений, и доказываем свои теории, повторяя эти наблюдения. Я объяснил, что индуктивное обобщение на основе наблю­дений невозможно и что индуктивное доказательство необоснованно. Я объяснил, что индуктивизм основывается на ошибочном представле­нии о том, что наука ищет предсказания на основе наблюдений, а не объяснения в ответ на задачи. Я также объяснил (следуя Попперу), как наука делает прогресс, придумывая новые объяснения и затем выбирая лучшие с помощью экспериментов. Все это почти полностью принима­ют ученые и философы. Но большинство философов не принимают то, что этот процесс доказан. Сейчас я объясню это.

Наука ищет лучшие объяснения. Научное объяснение толкует на­ши наблюдения, постулируя что-либо относительно того, какова наша реальность и как она действует. Мы считаем какое-либо объяснение  {146}  лучше других, если оно оставляет меньше белых пятен (например, ка­тегорий с необъясненными свойствами), требует меньшего количества более простых постулатов, является более обобщенным, проще согласу­ется с хорошими объяснениями из других областей и т.д. Но почему лучшее объяснение должно быть тем, чем мы всегда считаем его на практике, — показателем более истинной теории? Почему, коли на то пошло, откровенно плохое объяснение (скажем, не имеющее ни одного из вышеназванных качеств) обязательно должно быть ложным? Логи­чески необходимой связи между истиной и объяснительными возмож­ностями в действительности не существует. Плохое объяснение (такое, как солипсизм) может быть истинным. Даже самая лучшая имеюща­яся теория в определенных случаях может дать ложные предсказания, и это могут быть как раз те случаи, когда мы полагаемся на эту тео­рию. Ни одна обоснованная форма рассуждения логически не может ни исключить такой возможности, ни хотя бы доказать её невероятность. Но в таком случае, как мы можем оправдать то, что полагаемся на свои лучшие объяснения как на ведущие к практическому принятию реше­ний? В общем, какие бы критерии мы ни использовали для суждения о научных теориях, как можно, основываясь на том, что эти крите­рии удовлетворяют какой-то теории сегодня, подразумевать хоть что-нибудь относительно того, что произойдет, если мы будем полагаться на эти теории завтра?

Это современная форма «задачи индукции». Большинство совре­менных философов согласны с точкой зрения Поппера, что новые тео­рии не из чего не выводят, это просто гипотезы. Они также принима­ют, что научный прогресс создается посредством гипотез и опровер­жений (как описано в главе 3) и что теории принимают после опро­вержения всех их конкурентов, а не после получения многочисленных подтверждающих их примеров. Они согласны, что полученное таким образом знание стремится быть надежным. Проблема в том, что они не понимают, почему это знание должно быть надежным. Обычные ин­дуктивисты пытались сформулировать «принцип индукции», который гласит, что подтверждающие примеры повышают вероятность теории, или что «будущее будет похоже на прошлое», или что-то в этом роде. Они также пытались сформулировать методологию индуктивной на­уки, устанавливая правила о том, какие выводы можно обоснованно сделать из «данных». Все они потерпели неудачу по причинам, которые я уже объяснил. Но даже если бы они достигли успеха, в смысле  {147}  по­строения схемы успешного создания научного знания, это не решило бы задачу индукции в современном её понимании. Поскольку в этом случае «индукция» была бы ещё одним возможным способом выбора те­орий, а задача, почему эти теории следует считать надежной основой действий, осталась бы нерешенной. Другими словами, философы, ко­торых волнует эта «задача индукции», — не индуктивисты в старом смысле этого слова. Они не пытаются получить или доказать теории индуктивно. Они не ждут, что небо обрушится, но они не знают, как это доказать.

Современные философы жаждут получить это отсутствующее до­казательство. Они уже не верят, что получат его от индукции, но, тем не менее, в их схеме всего отсутствует индукция, от чего они страда­ют так же, как религиозные люди, потерявшие свою веру, страдают от «отсутствия Бога» в своей схеме всего. Но, по-моему, разница между от­сутствием Х в схеме всего и верой в Х слишком мала. Поэтому, чтобы приспособиться к более сложной концепции задачи индукции, мне хо­телось бы дать новое определение термину «индуктивист», подразуме­вая под ним человека, который считает необоснованность индуктивных доказательств проблемой основ науки. Другими словами, индуктивист считает, что существует некоторый пробел, который необходимо запол­нить если не принципом индукции, то чем-то ещё. Некоторые индукти­висты ничего не имеют против такой определенности. Другие с этим не согласны, поэтому я буду называть их крипто-индуктивистами.

Большинство современных философов — крипто-индуктивисты. Хуже того, они (как и многие ученые) весьма недооценивают роль объяснения в научном процессе. Подобным образом ведет себя и боль­шинство попперианских анти-индуктивистов, которые в связи с этим пришли к отрицанию существования доказательства (даже эксперимен­тального доказательства). Это открывает новый объяснительный про­бел в их схеме всего. Философ Джон Уоррал инсценировал свое видение этой задачи в воображаемом диалоге Поппера и ещё нескольких фи­лософов под названием «Почему Поппер и Уоткинс не смогли решить задачу индукции»[10]. Место действия — вершина Эйфелевой башни. Один из участников — назовем его «Парящим» — решает спуститься с башни не на лифте, как обычно, а спрыгнуть. Остальные пытаются убедить Парящего, что прыжок вниз означает верную смерть. Они используют  {148}  лучшие научные и философские аргументы. Но неугомонный Парящий по-прежнему ожидает, что будет безопасно парить в воздухе, и продол­жает указывать на то, что на основе прошлого опыта логически невоз­можно доказать предпочтительность конкурирующего результата.

Я считаю, что мы можем доказать наше ожидание гибели Паря­щего. Доказательство (конечно, всегда экспериментальное) приходит из объяснений, предоставленных важными научными теориями. В той степени, в какой эти объяснения хороши, рационально оправданно по­лагаться на предсказания соответствующих теорий. Поэтому в ответ Уорралу я привожу свой собственный диалог, проходящий в том же самом месте.

ДЭВИД: Поскольку я читал то, что Поппер имел сказать об ин­дукции, я верю, что он действительно, как и заявлял, решил задачу индукции. Но лишь немногие философы с этим согласны. Почему?

КРИПТО-ИНДУКТИВИСТ: Потому что Поппер никогда не обра­щался к задаче индукции в нашем понимании. То, что он делал, было представлено как критика индуктивизма. Индуктивизм гласил, что су­ществует «индуктивная» форма рассуждения, способная вывести общие теории о будущем и доказать их при наличии свидетельств в виде от­дельных наблюдений, сделанных в прошлом. Он считал, что существует принцип природы, принцип индукции, который гласит что-то вроде «на­блюдения сделанные в будущем, вероятнее всего будут похожи на на­блюдения, сделанные при сходных условиях в прошлом». Были сделаны попытки сформулировать этот принцип так, чтобы он действительно позволил вывести, или доказать, общие теории из отдельных наблю­дений. Все они потерпели неудачу. Критика Поппера, хотя и имевшая влияние среди ученых (особенно в связи с другой его работой, про­ливающей свет на методологию науки), вряд ли была оригинальной. Ошибочность индуктивизма была известна почти со времен его изоб­ретения и уж конечно с начала восемнадцатого века, когда он подверг­ся критике Дэвида Юма. Задача индукции не в том, как доказать или опровергнуть принцип индукции, а скорее в том (считая доказанным его необоснованность), как доказать любой вывод о будущем, основыва­ясь на прошлых свидетельствах. И прежде чем вы скажете, что в этом нет необходимости ...

ДЭВИД: В этом нет необходимости.

КРИПТО-ИНДУКТИВИСТ: Нет есть. Это-то как раз и раздражает в вас, последователях Поппера: вы отрицаете очевидное. Очевидно, что  {149}  причина того, что в этот раз вы даже не пытаетесь прыгать с баш­ни, частично состоит в том, что вы считаете оправданным полагаться на нашу лучшую теорию гравитации и неоправданным полагаться на некоторые другие теории. (Конечно, под «нашей лучшей теорией гра­витации» в данном случае я имею в виду нечто большее, чем общая от­носительность. Я также подразумеваю сложный набор теорий о таких вещах, как сопротивление воздуха, человеческая психология, упругость бетона и наличие в воздухе спасательных средств).

ДЭВИД: Да, я счел бы оправданным полагаться на такую теорию. В соответствии с методологией Поппера в таких случаях следует пола­гаться на лучшую подтвержденную теорию, т. е. на ту, которая подвер­глась самым строгим проверкам и выдержала их, тогда как её сопер­ники были опровергнуты.

КРИПТО-ИНДУКТИВИСТ: Вы сказали «следует» полагаться на лучшую подтвержденную теорию, но почему, объясните поточнее? По-видимому, потому что в соответствии с Поппером, процесс подтверж­дения доказал теорию в том смысле, что вероятность получения от неё истинных предсказаний выше, чем от других теорий.

ДЭВИД: Ну, не выше, чем от всех других теорий, потому что не­сомненно когда-нибудь у нас появятся даже лучшие теории гравита­ции ...

КРИПТО-ИНДУКТИВИСТ: Слушайте. Давайте договоримся не ис­пользовать уловки, не относящиеся к обсуждаемой нами теме. Конечно, когда-нибудь может появиться лучшая теория гравитации, но вы долж­ны решить, чего придерживаться сейчас, сейчас. И имея свидетельства, доступные сейчас, вы выбрали определенную теорию, в соответствии с которой действуете. И вы выбрали её по критериям Поппера, потому что считаете, что только по этим критериям вероятнее всего выбрать теорию, дающую правильные предсказания.

ДЭВИД: Да.

КРИПТО-ИНДУКТИВИСТ: Итак, подведем итог: вы считаете, что свидетельство, имеющееся у вас в настоящий момент, доказывает пред­сказание, что, спрыгнув с башни, вы погибнете.

ДЭВИД: Нет, не доказывает.

КРИПТО-ИНДУКТИВИСТ: Черт побери, вы противоречите сами себе. Только что вы сказали, что это предсказание доказано.

ДЭВИД: Оно доказано. Но оно доказано не свидетельством, если под «свидетельством» вы подразумеваете все эксперименты, результаты  {150}  которых теория правильно предсказала в прошлом. Как всем нам извест­но, это свидетельство согласуется с бесконечным множеством теорий, включая теории, предсказывающие каждый логически возможный ре­зультат моего прыжка вниз.

КРИПТО-ИНДУКТИВИСТ: Принимая это во внимание, я повто­ряю, что вся проблема заключается в том, чтобы найти то, что до­казывает предсказание. Это и есть задача индукции.

ДЭВИД: Эту задачу и решил Поппер.

КРИПТО-ИНДУКТИВИСТ: Я глубоко изучил труды Поппера, но это для меня новость. И каково же решение? Мне не терпится его услы­шать. Что доказывает предсказание, если не свидетельство?

ДЭВИД: Аргумент.

КРИПТО-ИНДУКТИВИСТ: Аргумент?

ДЭВИД: Только аргумент способен доказать что-либо и, конечно, условно. Все теоретическое подвержено ошибкам. Но аргумент, тем не менее, иногда может доказать теории. Для этого он и нужен.

КРИПТО-ИНДУКТИВИСТ: Я считаю, что это очередная ваша улов­ка. Вы не можете иметь в виду, что теорию, как и математическую теорему, доказывают с помощью чистого аргумента[11]. Свидетельство определенно играет свою роль.

ДЭВИД: Конечно. Это эмпирическая теория, поэтому, в соответ­ствии с научной методологией Поппера решающие эксперименты игра­ют основную роль при выборе теории. Когда конкурирующие теории опровергают, остается только одна теория.

КРИПТО-ИНДУКТИВИСТ: И как следствие этого опровержения и выбора, которые имели место в прошлом, доказывается практическое применение этой теории для предсказания будущего.

ДЭВИД: Полагаю, что так, хотя мне кажется, неверно говорить «как следствие», когда мы не говорим о логической дедукции.

КРИПТО-ИНДУКТИВИСТ: Это уже новый вопрос: какого рода это следствие? Я попытаюсь поймать вас на слове. Вы признаете, что тео­рию доказывают как с помощью аргумента, так и с помощью результа­тов экспериментов. Если бы результаты экспериментов были другими, аргумент доказал бы другую теорию. Таким образом, принимаете ли вы, что в этом смысле (да, через аргумент, но я не хочу повторять это условие) результаты прошлых экспериментов доказали предсказание?  {151} 

ДЭВИД: Да.

КРИПТО-ИНДУКТИВИСТ: Что же в точности было в тех действи­тельных прошлых результатах, доказавших предсказание, в противо­положность другим возможным прошлым результатам, которые точно так же могли доказать противоположное предсказание?

ДЭВИД: Действительные результаты опровергли все конкурирую­щие теории и подтвердили ту теорию, которая преобладает сейчас.

КРИПТО-ИНДУКТИВИСТ: Хорошо. Теперь слушайте вниматель­но, потому что вы только что сказали нечто, ложность чего не только доказуема, но что вы сами считали ложным несколько мгновений то­му назад. Вы говорите, что результаты экспериментов «опровергли все конкурирующие теории». Но вы отлично знаете, что никакой набор ре­зультатов экспериментов не может опровергнуть всех возможных кон­курентов и оставить одну общую теорию. Вы сами сказали, что любой набор прошлых результатов (я цитирую) «согласуется с бесконечным множеством теорий, включая теории, предсказывающие каждый логи­чески возможный результат моего прыжка вниз». Следовательно, пред­почитаемое вами предсказание не было доказано результатами экспери­ментов, потому что у вашей теории бесконечно много ещё не опроверг­нутых конкурентов, которые дают противоположные предсказания.

ДЭВИД: Я рад, что по вашей просьбе я внимательно слушал, по­скольку сейчас я понимаю, что, по крайней мере, частично наши разно­гласия вызваны неправильным пониманием терминологии. Когда Поп­пер говорит о «теориях-конкурентах» данной теории, он подразумева­ет не набор всех логически возможных конкурентов: он имеет в виду только фактических конкурентов, предложенных во время рациональ­ной полемики. (Сюда входят теории, «предложенные» чисто ментально одним человеком во время «полемики», проходящей в его разуме).

КРИПТО-ИНДУКТИВИСТ: Понятно. Ладно, я принимаю вашу тер­минологию. Но в этой связи (не думаю, что это имеет значение для наших настоящих целей, мне просто любопытно) разве не странное утверждение вы приписываете Попперу о том, что надежность теории зависит от случайности того, какие другие теории — ложные теории — люди предложили в прошлом, а не только от содержания рассматрива­емой теории и экспериментальных свидетельств?

ДЭВИД: Не совсем так. Даже вы, индуктивисты, говорите о...

КРИПТО-ИНДУКТИВИСТ: Я не индуктивист!

ДЭВИД: Нет, индуктивист.  {152} 

КРИПТО-ИНДУКТИВИСТ: Уф! Я повторяю, что приму вашу тер­минологию, если вы настаиваете. Но вы можете точно так же назвать меня дикобразом. Называть «индуктивистом» человека, который всего лишь полагает, что необоснованность индуктивного рассуждения дает нам нерешенную философскую задачу, — настоящее извращение.

ДЭВИД: Я так не считаю. Я думаю, что основная идея — это то, что определяет и всегда определяло индуктивиста. Но я вижу, что по край­ней мере одного Поппер достиг: слово «индуктивист» стало оскорбитель­ным! В любом случае, я объяснял, почему не так уж странно то, что надежность теории должна зависеть от того, какие ложные теории бы­ли предложены в прошлом. Даже индуктивисты говорят о надежности или ненадежности теории при наличии определенных «свидетельств». Ну а попперианцы могли говорить о лучшей теории, доступной для использования на практике, при наличии определенной проблемной си­туации. А самые важные черты проблемной ситуации — это: какие теории и объяснения конкурируют; какие аргументы выдвинуты; ка­кие теории опровергнуты. «Подтверждение» — это не просто принятие победившей теории. Для подтверждения необходимо эксперименталь­ное опровержение конкурирующих теорий. Подтверждающие примеры сами по себе не имеют никакого значения.

КРИПТО-ИНДУКТИВИСТ: Очень интересно. Теперь я понимаю роль, которую играют опровергнутые конкуренты теории при дока­зательстве её предсказаний. При индуктивизме первостепенная важ­ность принадлежала наблюдению. Человек представлял массу прошлых наблюдений, из которых путем индуктивного рассуждения выводилась теория, и эти же наблюдения составляли свидетельство, которое каким-то образом доказывало теорию. В картине научного прогресса Поппе­ра первостепенная важность принадлежит не наблюдениям, а задачам, полемике, теориям и критике. Эксперименты придумывают и прово­дят только для разрешения спора. Следовательно, любые эксперимен­тальные результаты, которые фактически опровергают теорию — и не просто любую теорию, а теорию, которая должна быть истинным пре­тендентом на победу в рациональной полемике, — составляют «под­тверждение». И только эти эксперименты становятся свидетельством надежности победившей теории.

ДЭВИД: Правильно. Но даже тогда «надежность», которую обеспе­чивает под­твержде­ние, не абсолютна, а лишь относительна по сравне­нию с конкурирующими теориями. То есть, мы ожидаем, что, полага­ясь  {153}  на подтвержденные теории, мы отберем лучшие из предложенных. Это достаточная основа для действия. Нам не нужна (да мы и не смо­жем обрести) уверенность в том, насколько хорошим будет предложен­ный порядок действий. Более того, мы всегда можем ошибаться, ну и что? Мы не можем ни использовать ещё непредложенные теории, ни исправить те ошибки, которые ещё не видим.

КРИПТО-ИНДУКТИВИСТ: Вполне согласен. Я рад, что узнал кое-что о научной ме­тодо­логии. Но теперь (надеюсь, вы не сочтете меня невежливым) я должен ещё раз обратить ваше внимание на вопрос, ко­торый я все время задаю. Допустим, что теория прошла весь этот про­цесс. Когда-то у неё были конкуренты. Затем провели эксперименты и опровергли всех её конкурентов. Но её не опровергли. Таким образом, она подтвердилась. Что особенного в её подтверждении, что оправды­вает то, что мы будем полагаться на неё в будущем?.

ДЭВИД: Поскольку всех её конкурентов опровергли, они уже не яв­ляются рационально надежными. Подтвержденная теория — это един­ственная рационально надежная теория.

КРИПТО-ИНДУКТИВИСТ: Но ведь это просто переключает внима­ние с будущей зна­чимости прошлого подтверждения на будущую зна­чимость прошлого опровержения. Остается та же самая задача. Почему экспериментально опровергнутая теория «не является рационально на­дежной»? Неужели всего лишь одно ложное следствие означает, что вся теория не может быть истинной?

ДЭВИД: Да.

КРИПТО-ИНДУКТИВИСТ: Но в отношении будущей применимос­ти теории эта кри­тика логически несущественна. Вероятно, опроверг­нутая теория не может быть универсально истинной — в частности, она могла не быть истинной в прошлом, когда её проверяли[12]. Но, тем не менее, она могла иметь много истинных следствий и, в частности, могла стать универсально истинной в будущем.

ДЭВИД: Эта терминология «прошлой истинности» и «будущей ис­тинности» вводит в заблуждение. Каждое конкретное предсказание те­ории либо истинно, либо ложно — это неизменно. В действительности вы имеете в виду, что, хотя опровергнутая теория ложная, т. к. она да­ет некоторые ложные предсказания, все её предсказания относительно будущего, тем не менее, могут оказаться истинными. Иными словами,  {154}  другая теория, которая делает те же самые предсказания относительно будущего, но другие предсказания относительно прошлого, может быть истинной.

КРИПТО-ИНДУКТИВИСТ: Пусть так. Тогда вместо того чтобы спрашивать, почему опровергнутая теория не является рационально надежной, мне, строго говоря, следует спросить: почему опроверже­ние теории также переводит в разряд ненадежных все варианты этой теории, которые согласуются с ним в отношении будущего, — даже те варианты, которые не были опровергнуты.

ДЭВИД: Не опровержение переводит такие теории в разряд нена­дежных. Просто иногда они уже ненадежны, например, из-за плохих объяснений. И именно тогда наука может сделать прогресс. Чтобы те­ория победила в споре, все её конкуренты должны быть ненадежными, это касается и всех вариантов конкурирующих теорий, которые толь­ко придумали. Но не забывайте, ненадежными должны быть только те конкурирующие теории, которые уже придумали. Например, в случае с гравитацией никто даже не предложил надежную теорию, которая не противоречила бы общепринятой во всех её проверенных предсказани­ях, но отличалась бы своими предсказаниями относительно будущих экспериментов. Я уверен, что такие теории возможны, например, те­ория, которая последует за общепринятой сейчас, по-видимому, будет одной из них. Но если никто ещё не придумал такую теорию, как можно действовать в соответствии с ней?

КРИПТО-ИНДУКТИВИСТ: Что вы имеете в виду, говоря, что «ни­кто ещё не придумал такую теорию»? Я прямо сейчас могу её приду­мать.

ДЭВИД: Я очень сильно в этом сомневаюсь.

КРИПТО-ИНДУКТИВИСТ: Конечно, могу. Вот она. «Когда бы вы, Дэвид, ни спрыгнули с большой высоты так, что, в соответствии с об­щепринятой теорией, вы бы погибли, вы не погибнете, вы будете па­рить в воздухе. Независимо от универсальности общепринятой теории». Я говорю вам, что каждая прошлая проверка вашей теории была про­веркой моей, поскольку все предсказания как вашей, так и моей тео­рий относительно прошлых экспериментов идентичны. Следовательно, опровергнутые конкуренты вашей теории являются опровергнутыми конкурентами моей теории. И, следовательно, моя новая теория под­тверждается точно так же, как и ваша общепринятая. Почему моя  {155}  те­ория может быть «ненадежной»? Какие у неё могут быть недостатки, которых нет у вашей теории?

ДЭВИД: Практически все недостатки, которые указаны в книге Поппера! Ваша теория создана из общепринятой путем прибавления не­объясненной модификации, что я буду парить в воздухе. Эта модифика­ция, в действительности, является новой теорией, но вы не привели ни одного аргумента ни в противовес общепринятой теории моих грави­тационных свойств, ни в пользу новой теории. Вы не подвергали свою новую теорию ни критике (помимо той, которую я провожу сейчас), ни экспериментальной проверке. Она не решает — и даже не претендует на решение — хоть какой-то текущей задачи, и вы не предлагаете ни­какой новой интересной задачи, которую она могла бы решить. И хуже всего то, что ваша модификация ничего не объясняет, но портит объяс­нение гравитации, лежащее в основе общепринятой теории. Именно это объяснение оправдывает то, что мы полагаемся на общепринятую тео­рию, а не на вашу. Таким образом, по всем рациональным критериям, вместе взятым, предложенную вами модификацию можно отвергнуть.

КРИПТО-ИНДУКТИВИСТ: Разве я не могу сказать то же самое о вашей теории? Ваша теория отличается от моей всего лишь той же самой незначительной модификацией, но в обратном направлении. Вы считаете, что я должен объяснить свою модификацию. Но почему мы находимся в неравном положении?

ДЭВИД: Потому что ваша теория, в отличие от моей, не дает объ­яснений своим предсказаниям.

КРИПТО-ИНДУКТИВИСТ: Но если бы мою теорию предложили первой, оказалось бы, что это ваша теория содержит необъясненную модификацию, и именно вашу теорию «отвергли» бы.

ДЭВИД: Это просто неправда. Любой рационально мыслящий че­ловек, который сравнивал бы вашу теорию с общепринятой, даже если бы ваша была предложена первой, немедленно отказался бы от вашей теории в пользу общепринятой. Ибо тот факт, что ваша теория — это необъясненная модификация другой теории, проявляется в самой её формулировке.

КРИПТО-ИНДУКТИВИСТ: Вы имеете в виду, что моя теория пред­ставлена в форме «такая-то теория универсально справедлива, за ис­ключением такой-то ситуации», но я не объясняю справедливость этого исключения?  {156} 

ДЭВИД: Точно.

КРИПТО-ИНДУКТИВИСТ: Ага! Я думаю, что могу доказать, что здесь вы ошибаетесь (с помощью философа Нельсона Гудмена). Рас­смотрим вариант русского языка, в котором нет глагола «падать». Вмес­то этого есть глагол «х-падать», который означает «падать» всегда, кро­ме того случая, когда его применяют по отношению к вам, в этом слу­чае он значит «парить». Подобным образом «х-парить» значит «парить» всегда, кроме того случая, когда его применяют по отношению к вам, тогда он означает «падать». На этом новом языке я мог бы выразить свою теорию как немодифицированное утверждение, что «все объекты х-падают, когда теряют опору». Но общепринятая теория (которая по-русски звучит как «все объекты падают, когда теряют опору») на новом языке должна быть модифицирована: «все объекты х-падают, когда те­ряют опору, кроме Дэвида, который х-парит». Таким образом, то, какая из этих двух теорий модифицирована, зависит от языка, на котором они выражены, не так ли?

ДЭВИД: По форме, так. Но это тривиально. По сути ваша теория со­держит необъясненное утверждение, которое модифицирует общепри­нятую теорию. Общепринятая теория — это по сути ваша теория, ли­шенная необъясненной модификации. Как бы там ни было, это объек­тивный факт, который не зависит от языка.

КРИПТО-ИНДУКТИВИСТ: Не понимаю, почему. Вы сами восполь­зовались формой моей теории, чтобы указать «излишнюю модифика­цию». Вы сказали, что она «проявляется» в виде дополнительного усло­вия в самой формулировке теории — на русском языке. Но после пере­вода теории на мой язык модификация не проявляется; напротив, явная модификация появляется в самой формулировке общепринятой теории.

ДЭВИД: Это так. Но не все языки равны. Языки — это теории. В своем словарном запасе и грамматике они содержат существенные утверждения о мире. Когда бы мы ни сформулировали теорию, лишь небольшая часть её содержания выражается явно: остальное передает язык. Как и все теории, языки изобретают и отбирают по их способ­ности решать определенные задачи. В этом случае задачами является выражение других теорий в формах, в которых их удобно применять, сравнивать и критиковать. Один из самых важных способов решения таких задач языками — это неявная реализация непротиворечивых и доказанных теорий при одновременном лаконичном и ясном выраже­нии того, что нужно сформулировать и аргументировать.  {157} 

КРИПТО-ИНДУКТИВИСТ: Это я принимаю.

ДЭВИД: Не случайно язык реализует концептуальную основу с по­мощью одного набора идей, а не другого. Он отражает текущее состо­яние проблемной ситуации говорящего. Именно поэтому форма вашей теории на русском языке — это хорошее указание на её статус по от­ношению к текущей проблемной ситуации — решает ли она задачи или усложняет их. Но меня не устраивает не форма вашей теории. Мне не нравится её суть. Меня не устраивает то, что ваша теория ничего не решает, а только усложняет проблемную ситуацию. Этот недостаток явно проявляется при выражении теории на русском языке и неявно при её выражении на вашем языке. Но от этого он не становится менее ощутимым. С тем же успехом я мог бы выразить свое недовольство на русском языке, на научном жаргоне, на предложенном вами языке или на любом языке, способном выразить нашу с вами беседу. (Поп­пер считает, что всегда следует стремиться вести беседу, используя терминологию оппонента).

КРИПТО-ИНДУКТИВИСТ: Возможно, в этом есть смысл. Но не могли бы вы уточнить, каким образом моя теория усложняет проблем­ную ситуацию и почему это должно быть очевидно даже для человека, для которого мой гипотетический язык является родным?

ДЭВИД: Ваша теория утверждает, что существует физическая ано­малия, которой нет в соответствии с общепринятой теорией. Аномалией является мой так называемый иммунитет к притяжению. Безусловно, вы можете изобрести язык, который выражает эту аномалию неявно, так что в утверждениях вашей теории гравитации вам не придется ссылаться на неё явно. Но ссылаться на неё вам придется. Хоть как назови розу, аромат её будет столь же сладок. Допустим, что приду­манный вами язык — ваш родной язык (пусть даже родной язык всех людей) и что придуманная вами теория гравитации истинна. Допус­тим, что все мы считаем её доказанной и настолько естественной, что используем это же слово «х-падать» для описания того, что произошло бы с вами или со мной, если бы мы спрыгнули с башни. Ничто ни в малейшей степени не меняет очевидную разницу между моей реак­цией на притяжение и реакцией на него любого другого человека. Если бы вы спрыгнули с башни, падая вниз, вы, возможно, позавидовали бы мне. Вы могли бы подумать: «Если бы я только мог реагировать на притяжение так же, как Дэвид, а не так, как реагирую я, абсолютно по-другому!»  {158} 

КРИПТО-ИНДУКТИВИСТ: Это правда. Только из-за того, что одно и то же слово «х-падение» описывает как вашу реакцию на притяжение, так и мою, я бы не подумал, что действительная реакция будет оди­наковой. Напротив, свободно говоря на предполагаемом языке, я бы очень хорошо знал, что «х-падение» физически будет разным для меня и для вас, так же как человек, родной язык которого русский, знает, что слово «напиться» означает физически разные вещи для человека и для стакана воды. Я бы не подумал, что «если это произошло с Дэви­дом, значит, он будет х-падать так же, как я». Я бы подумал: «Если это произошло с Дэвидом, он х-упал и остался в живых, а если я х-упаду, то я погибну».

ДЭВИД: Более того, несмотря на вашу уверенность в том, что я буду парить в воздухе, вы не понимаете, почему это произойдет. Знать — не значит понимать. Вам было бы любопытно узнать объ­яснение этой «хорошо известной» аномалии. Это касается и остальных людей. Физики со всего мира съехались бы, чтобы изучить мою ано­мальную реакцию на притяжение. На самом деле, если бы ваш язык действительно был общепринятым и все считали бы вашу теорию дей­ствительно доказанной, научный мир, вероятно, с нетерпением ждал бы моего рождения, и ученые становились бы в очередь, чтобы получить привилегию выбросить меня из самолета! Но, конечно, сама предпо­сылка того, что ваша теория считается доказанной и выражается на общепринятом языке, — нелепа. Будь это теория или не теория, язык или не язык, в действительности ни один рационально мыслящий че­ловек не примет возможность такой явной физической аномалии при отсутствии очень веского объяснения в её пользу. Следовательно, так же, как объективно отвергнут вашу теорию, отвергнут и ваш язык, поскольку это просто другой способ формулировки вашей теории.

КРИПТО-ИНДУКТИВИСТ: А может всё-таки здесь скрывается ре­шение задачи индук­ции? Давайте посмотрим. Что меняет то, что мы узнали о языке? Мой аргумент был основан на видимой симметрии между вашей и моей позициями. Мы оба принимали теории, которые согласовывались с существующими результатами экспериментов и про­тивники которых (кроме друг друга) были опровергнуты. Вы сказали, что я нерационально мыслю, потому что моя теория содержит необъяс­ненное утверждение, но я возразил, сказав, что на другом языке такое утверждение будет содержать ваша теория, поэтому симметрия сохра­нилась. Но теперь вы сказали, что языки — это теории и что сочета­ние  {159}  предложенного мной языка с теорией утверждает существование объективной физической аномалии, в отличие от того, что утверждает сочетание русского языка с общепринятой теорией. Здесь нарушает­ся симметрия между нашими позициями, и разбивается приводимый мной аргумент.

ДЭВИД: Это действительно так.

КРИПТО-ИНДУКТИВИСТ: Я попробую ещё чуть-чуть прояснить это. Вы называете принципом рациональности то, что теория, утверж­дающая существование объективной физической аномалии, при всех остальных равных условиях имеет меньше шансов дать истинные пред­сказания, чем теория, которая этого не утверждает?

ДЭВИД: Не совсем так. Теории, содержащие аномалии без их объяс­нения имеют меньше шансов, чем их конкуренты, дать истинные пред­сказания. В общем, принцип рациональности заключается в том, что теории постулируют для решения задач. Значит, любой постулат, не решающий задачи, следует отвергать. Это необходимо потому, что хо­рошее объяснение, модифицированное таким постулатом, становится плохим объяснением.

КРИПТО-ИНДУКТИВИСТ: Теперь, когда я понимаю, что между теориями, дающими необъясненные предсказания, и остальными тео­риями есть объективная разница, я должен признать, что это выглядит обещающим для решения задачи индукции. Похоже, вы открыли способ оправдать то, что в будущем вы будете полагаться на теорию грави­тации при наличии только прошлых проблемных ситуаций (включая свидетельство прошлых наблюдений) и разницы между хорошим объ­яснением и плохим. Вам не придется делать допущения вроде «будущее, вероятно, будет похоже на прошлое».

ДЭВИД: Это открыл не я.

КРИПТО-ИНДУКТИВИСТ: Но, по-моему, и не Поппер. Во-первых, Поппер считал, что научные теории вообще нельзя доказать. Вы сде­лали четкое разграничение теорий, доказываемых с помощью наблюде­ний (как считают индуктивисты) и теорий, доказываемых с помощью аргументов. Поппер такого различия не делал. А в отношении задачи индукции он действительно говорил, что несмотря на то, что будущие предсказания теории невозможно доказать, мы должны действовать так, словно они уже доказаны!

ДЭВИД: Я не думаю, что он говорил именно так. А если и говорил, то на самом деле не имел это в виду.  {160} 

КРИПТО-ИНДУКТИВИСТ: Что?

ДЭВИД: Или если имел это в виду, то ошибался. Почему это вас так расстраивает? Человек может открыть новую теорию (в данном случае эпистемологию Поппера), но вместе с тем придерживаться убеждений, ей противоречащих. Чем глубже теория, тем более вероятен такой ис­ход.

КРИПТО-ИНДУКТИВИСТ: Вы заявляете, что понимаете теорию Поппера лучше самого Поппера?

ДЭВИД: Я не знаю, да и мне нет до этого дела. Почтение, которое философы оказывают историческим источникам идей, весьма извра­щенно, знаете ли. Мы, ученые, не считаем, что человек, открывший некую теорию, обладает каким-то особым её пониманием. Напротив, мы редко обращаемся к оригинальным источникам. Они неизменно устаревают по мере того, как проблемные ситуации, вызвавшие их, преобразуются под влиянием открытий. Например, большинство уче­ных в области теории относительности понимают теорию Эйнштейна лучше него. Основатели квантовой теории привели в полнейший бес­порядок понимание своей собственной теории. Такое непрочное начало не неожиданность, и, встав на плечи гигантов, возможно, не так уж и трудно увидеть дальше, чем видели они. Но в любом случае, гораздо интереснее спорить о том, что есть истина, а не о том, что думал или не думал какой-то конкретный мыслитель, каким бы великим он ни был.

КРИПТО-ИНДУКТИВИСТ: Хорошо, я согласен. Но одну минуточ­ку, я думаю, что я поторопился, сказав, что вы не постулируете ни­какой разновидности принципа индукции. Послушайте: вы доказали, что теория о будущем (общепринятая теория гравитации) более надеж­на, чем другая теория (предложенная мной), даже несмотря на то, что обе они согласуются со всеми наблюдениями, известными в настоящий момент. Поскольку общепринятая теория применима как к будущему, так и к прошлому, вы доказали высказывание о том, что в отношении гравитации будущее похоже на прошлое. И то же самое будет верно вся­кий раз, когда вы доказываете надежность теории на основе того, что она подтверждена. Далее, чтобы перейти от «подтвержденной» к «на­дежной», вы исследовали объяснительную способность теорий. Таким образом, вы показали, что то, что мы могли бы назвать «принципом поиска лучших объяснений», в совокупности с некоторыми наблюдени­ями — да, и аргументами — подразумевает, что будущее во многих отношениях будет похоже на прошлое. А это и есть принцип индукции!  {161}  Если ваш «объяснительный принцип» неявно выражает принцип индук­ции, значит, логически это и есть принцип индукции. Так что индук­тивизм всё-таки истинен, а принцип индукции действительно следует постулировать, явно или неявно, прежде чем мы сможем предсказать будущее.

ДЭВИД: Дорогой мой! Этот индуктивизм — действительно страш­ная болезнь. После ремиссии, длившейся несколько секунд, болезнь об­острилась ещё сильнее.

КРИПТО-ИНДУКТИВИСТ: Рационализм Поппера точно также оправдывает «переход на личности» вместо разумных аргументов? Я спрашиваю только, чтобы получить информацию.

ДЭВИД: Прошу прощения. Позвольте мне обратиться непосредст­венно к сути вашего высказывания. Да, я доказал утверждение о буду­щем. Вы говорите, что это означает, что «будущее похоже на прошлое». Ну, если не задумываться о сути, да, так как любая теория о будущем утверждала бы, что в некотором смысле будущее похоже на прошлое. Но это заключение, что будущее похоже на прошлое, не есть искомый принцип индукции, поскольку из него мы не можем ни вывести, ни до­казать ни одну теорию или предсказание относительно будущего. На­пример, мы не смогли бы им воспользоваться, чтобы отличить вашу теорию гравитации от общепринятой, так как и та, и другая по-своему утверждают, что будущее похоже на прошлое.

КРИПТО-ИНДУКТИВИСТ: Разве мы не можем вывести из «объяс­нительного принципа» некую разновидность принципа индукции, кото­рую можно было бы использовать для отбора теорий? Как насчет: «если необъясненная аномалия не имела места в прошлом, то её присутствие в будущем невероятно»?

ДЭВИД: Нет, наше доказательство не зависит от того, имела ли место в прошлом какая-то конкретная аномалия. Оно связано с тем, существует ли объяснение существования этой аномалии.

КРИПТО-ИНДУКТИВИСТ: Хорошо. Тогда я сформулирую поточ­нее: «если в настоящее время не существует объяснительной теории, предсказывающей, что конкретная аномалия будет иметь место в бу­дущем, то маловероятно, что она будет иметь место в будущем».

ДЭВИД: В принципе это может быть и так. Лично я согласен с этим. Однако это не разновидность того, что «будущее вероятно будет похоже на прошлое». Более того, пытаясь максимально приблизить этот прин­цип к такому виду, вы ограничили его случаями «в настоящем», «в будущем»  {162}  и «аномалия». Но его истинность не уменьшается и без этих специ­ализаций. Это просто общее утверждение относительно эффективности аргумента. Короче, если не существует аргумента в пользу какого-то постулата, значит, этот постулат ненадежен. Прошлое, настоящее или будущее. Аномалия или не аномалия. Период.

КРИПТО-ИНДУКТИВИСТ: Понятно.

ДЭВИД: В понятиях «рационального аргумента» или «объяснения» нет ничего, что как-то особенно связывало бы будущее с прошлым. Не постулируют «похожесть» чего-либо на что-либо. И даже если бы это сделали, это бы не помогло. Говоря на обыденном языке, само поня­тие «объяснения» подразумевает, что будущее «похоже на прошлое», но, тем не менее, оно не имеет в виду ничего особенного относительно бу­дущего, а потому, это не принцип индукции. Принципа индукции не существует. Не существует и процесса индукции. Никто не пользуется ими или чем-то похожим. И больше не существует задачи индукции. Теперь это ясно?

КРИПТО-ИНДУКТИВИСТ: Да. Мне нужно немного времени, чтобы привести в порядок свое мировоззрение.

ДЭВИД: Я думаю, вам поможет более подробное рассмотрение ва­шей альтернативной «теории гравитации».

КРИПТО-ИНДУКТИВИСТ: ...

ДЭВИД: Как мы решили, ваша теория объективно состоит из те­ории гравитации (общепринятой теории), модифицированной необъяс­ненным предсказанием относительно меня. Она гласит, что, потеряв опо­ру, я буду парить. «Потеря опоры» означает «отсутствие воздействия на меня силы, направленной вверх», таким образом, предложение заклю­чается в том, что я не буду воспринимать «силу» гравитации, которая, в противном случае, потянула бы меня вниз. Но в соответствии с об­щей теорией относительности, гравитация — это не сила, а проявление искривленности пространства-времени. Эта искривленность объясняет, почему предметы, не имеющие опоры, как я или Земля, со временем приближаются друг к другу. Следовательно, в свете современной физи­ки ваша теория, по-видимому, утверждает, что на меня воздействует направленная вверх сила, которая необходима, чтобы удерживать ме­ня на постоянном расстоянии от Земли. Но откуда берется эта сила, и как она себя ведет? Например, что такое «постоянное расстояние»? Если бы Земля начала двигаться вниз, отреагировал бы я мгновен­но, чтобы остаться на той же высоте (что допустило бы связь более  {163}  быструю, чем скорость света, что противоречит другому принципу от­носительности) или информация о том, где находится Земля, сначала достигла бы меня со скоростью света? Если так, то что переносит эту информацию? Если это новый вид волны, испускаемой Землей, то ка­ким уравнениям он подчиняется? Переносит ли он энергию? Каково его квантово-механическое поведение? Или я особым образом отреа­гирую на существующие волны, например, световые? В этом случае исчезнет ли аномалия, если между мной и Землей поместить светоне­проницаемую перегородку? Да и разве Земля большей частью не све­тонепроницаема? Где начинается «Земля»: что определяет поверхность над которой я должен парить?

КРИПТО-ИНДУКТИВИСТ: ...

ДЭВИД: Коли на то пошло, что определяет то, где начинаюсь я? Если я буду держать тяжелый предмет, он тоже будет парить? Если так, то самолет, в котором я летел, мог бы выключить двигатели и аварии бы не произошло. Что следует считать «держанием»? Упадет ли самолет, если я вдруг отпущу ручки кресла? А если это воздействие не распространяется на вещи, которые я держу, то как быть с моей одеждой? Она потянет меня вниз и в конце концов погубит меня, если я спрыгну с башни? А как насчет последнего обеда?

КРИПТО-ИНДУКТИВИСТ: ...

ДЭВИД: Я мог бы продолжать до бесконечности. Суть в том, что чем дольше мы рассматриваем последствия предложенной вами анома­лии, тем больше мы находим вопросов, на которые нет ответов. И дело даже не в том, что ваша теория не закончена. Эти вопросы — дилем­мы. Как бы на них ни ответили, они создают новые задачи и тем самым портят удовлетворительные объяснения других явлений.

КРИПТО-ИНДУКТИВИСТ: ...

ДЭВИД: Таким образом, ваш дополнительный постулат является не просто излишним, а положительно плохим. В общем случае, извра­щенные, но не опровергнутые теории, которые могут быть предложе­ны без подготовки, распадаются на две категории. Одна — это теории которые постулируют ненаблюдаемые категории, как частицы, не взаи­модействующие с любой другой материей. Их можно отвергнуть за то, что они ничего не решают («бритва Оккама», если хотите). А есть тео­рии, подобные вашей, которые предсказывают необъясненные наблюда­емые аномалии. Их можно отвергнуть за то, что они ничего не решают и портят существующие решения. Поспешу добавить, что они не  {164}  конфликтуют с существующими объяснениями. Они лишают объяснитель­ной способности существующие теории, утверждая, что предсказания этих теорий имеют исключения, но не объясняя, почему. Нельзя прос­то сказать: «геометрия пространства-времени сводит вместе объекты, лишенные опоры, если только одним из них не является Дэвид, в этом случае она никак на них не воздействует». И неважно, объясняется ли гравитация кривизной пространства-времени или чем-то другим. Прос­то сравните свою теорию с совершенно обоснованным утверждением, что перо будет парить, медленно спускаясь вниз, потому что к нему действительно будет приложена достаточная направленная вверх сила со стороны воздуха. Это утверждение — следствие нашей существую­щей объяснительной теории о том, что такое воздух, поэтому, в отличие от вашей теории, оно не вызывает появления новой задачи.

КРИПТО-ИНДУКТИВИСТ: Я понимаю это. Вы не могли бы помочь мне привести в порядок мое мировоззрение?

ДЭВИД: Вы читали мою книгу Структура реальности?

КРИПТО-ИНДУКТИВИСТ: Я собираюсь это сделать, но сейчас я прошу помощи в разрешении весьма специфического затруднения.

ДЭВИД: Я вас слушаю.

КРИПТО-ИНДУКТИВИСТ: Сложность в следующем. Когда я вспо­минаю наш с вами разговор, я полностью убежден, что ваше пред­сказание того, что произойдет, если вы или я спрыгнем с башни, не было выведено из такой индуктивной гипотезы, как «будущее похоже на прошлое». Но возвращаясь и осмысливая общую логику ситуации, я боюсь, что по-прежнему не понимаю, как это возможно. Рассмотрим сырье для доказательства. Первоначально я допустил, что прошлые на­блюдения и дедуктивная логика — это просто сырье. Затем я признал, что важна и текущая проблемная ситуация, потому что нам необхо­димо доказать свою теорию, как более надежную по сравнению с её существующими конкурентами. А потом мне пришлось учесть, что ог­ромные классы теорий можно исключить с помощью одного только ар­гумента, потому что они представляют собой плохие объяснения, и что принципы рациональности можно включить уже в сырье. Чего я не мо­гу понять, так это того, как из этого сырья — прошлых наблюдений, настоящих проблемных ситуаций и вечных принципов логики и рацио­нальности, которые не доказывают выводы из прошлого в будущее — появляется доказательство будущих предсказаний. Кажется, что здесь не хватает логического звена. Мы где-то делаем скрытое допущение?  {165} 

ДЭВИД: Нет, с логикой все в порядке. То, что вы называете «сырь­ем», на самом деле уже содержит утверждения о будущем. Лучшие из существующих теорий, от которых нельзя легко отказаться, потому что они решают задачи, уже содержат предсказания относительно бу­дущего. И эти предсказания нельзя отделить от остального содержания теорий, что вы пытались сделать, потому что в этом случае будет ис­порчена объяснительная способность этих теорий. Следовательно, лю­бая новая теория, которую мы предлагаем, должна быть либо согласова­на с существующими теориями, содержащими некоторые намеки на то, что может сказать о будущем новая теория, либо она должна противо­речить некоторым существующим теориям, но обращаться к задачам, поставленным ею, давая альтернативные объяснения, которые вновь ограничивают то, что она может сказать о будущем.

КРИПТО-ИНДУКТИВИСТ: Таким образом, у нас нет никакого принципа рассуждения, который говорит, что будущее будет похоже на прошлое, но у нас есть фактические теории, которые это утверж­дают. А есть ли у нас фактические теории, которые неявно содержат ограниченную разновидность индуктивного принципа?

ДЭВИД: Нет. Наши теории просто утверждают что-то относитель­но будущего. Поверхностно любая теория о будущем неявно содержит то, что будущее каким-то образом будет «похоже на прошлое». Но мы узнаем, в каком отношении, по утверждению теории, будущее будет похоже на прошлое, только тогда, когда у нас есть эта теория. Точно так же вы могли бы сказать, что поскольку наши теории считают, что определенные черты реальности одинаковы во всем космическом про­странстве, они неявно содержат «пространственный принцип индук­ции» относительно того, что «ближнее похоже на дальнее». Мне хотелось бы выделить, что в любом практическом смысле слова «похожий» наши настоящие теории говорят, что будущее не будет похоже на прошлое. Например, космологическое «Большое Сжатие» (повторное разрушение вселенной до превращения в отдельную точку) — это событие, кото­рое предсказывают некоторые космологи, но которое во всех физичес­ких смыслах настолько маловероятно в настоящее время, насколько это только возможно. Сами законы, исходя из которых мы предсказываем его появление, к этому неприменимы.

КРИПТО-ИНДУКТИВИСТ: В этом я убедился. Попробую использо­вать последний аргумент. Мы видели, что будущие предсказания мож­но доказать, взывая к принципам рациональности. А что доказывает  {166}  их? Они же как-никак не являются чисто логическими истинами. По­этому возможны два варианта: они либо тоже не доказаны; либо дока­заны с помощью каких-то ещё неизвестных средств. В любом случае доказательство здесь отсутствует. Я уже не подозреваю здесь скрытую задачу индукции. Тем не менее, уничтожив задачу индукции, не от­крыли ли мы под ней другую фундаментальную задачу, которая тоже связана с отсутствием доказательств?

ДЭВИД: Что доказывает принципы рациональности? Как обычно, аргумент. Что, например, оправдывает то, что мы полагаемся на законы дедукции, кроме того, что любая попытка доказать их логически должна вести либо к порочному кругу, либо к бесконечной регрессии? Они доказаны, потому что заменой законов дедукции невозможно улучшить ни одно объяснение.

КРИПТО-ИНДУКТИВИСТ: По-моему, это не слишком надежная ос­нова для чистой логики.

ДЭВИД: Она не абсолютна надежна. И нам не следует ожидать этого от неё, поскольку логическое рассуждение — процесс не менее физический, чем рассуждение научное, а потому ему присуща ошибоч­ность. Законы логики не самоочевидны. Есть люди, «математические интуитивисты», которые оспаривают традиционные законы дедукции (логические «правила вывода»). Я вернусь к их странному мировоз­зрению в главе 10 Структуры реальности. Невозможно доказать, что они ошибаются, но я приведу доводы в пользу того, что они ошибаются, и я уверен, что мой аргумент оправдывает этот вывод.

КРИПТО-ИНДУКТИВИСТ: Тогда, значит, вы считаете, что не су­ществует «задачи дедукции»?

ДЭВИД: Нет. Я не думаю, что при обычных способах доказатель­ства выводов в науке, философии или математике может возникнуть какая-либо задача. Однако, интересен тот факт, что физическая все­ленная допускает процессы, создающие знание о самой себе и о дру­гих вещах. Мы разумно можем попытаться объяснить этот факт точно так же, как объясняем другие физические факты, то есть через объ­яснительные теории. В главе 6 Структуры реальности вы видели, что я считаю принцип Тьюринга уместной в данном случае теорией. Он гласит, что можно построить генератор виртуальной реальности, ре­пертуар которого содержит каждую физически возможную среду. Ес­ли принцип Тьюринга является физическим законом, что я доказал, значит, мы не должны удивляться, обнаружив, что можем создавать  {167}  точные теории о реальности, потому что это просто виртуальная ре­альность в действии. Как факт возможности паровых двигателей — непосредственное выражение принципов термодинамики, так и факт, что человеческий разум способен создавать знание, — непосредствен­ное выражение принципа Тьюринга.

КРИПТО-ИНДУКТИВИСТ: Но откуда нам известно об истинности принципа Тьюринга?

ДЭВИД: Конечно, это нам неизвестно... Но вы боитесь, что если мы не сможем доказать принцип Тьюринга, то опять потеряем оправ­дание того, что полагаемся на научные предсказания?

КРИПТО-ИНДУКТИВИСТ: Э, да.

ДЭВИД: Но мы уже перешли к совсем другому вопросу! Сейчас мы обсуждаем очевидный факт о физической реальности, а именно, что она может давать надежные предсказания о самой себе. Мы пытаемся объяснить этот факт, чтобы поместить его в те же рамки, в которых находятся все остальные известные нам факты. Я говорил о том, что, возможно, здесь действует определенный закон физики. Но если я оши­бался, на самом деле, даже если бы мы совсем не могли объяснить это замечательное свойство реальности, это ни на йоту не повлияло бы на доказательство любой научной теории. Поскольку это ни на йоту не ухудшило бы объяснения такой теории.

КРИПТО-ИНДУКТИВИСТ: У меня закончились аргументы. Мой интеллект убежден. Тем не менее, я должен сознаться, что всё ещё чувствую нечто, что могу описать как «эмоциональное сомнение».

ДЭВИД: Возможно, вам поможет мое последнее замечание, не о тех специфических аргументах, о которых вы говорили, а о неправильном представлении, лежащем в основе многих из них. Вы знаете, что это неправильное представление, но, возможно, вы ещё не включили в свое мировоззрение следствия этого. Может быть, именно это и является источником вашего «эмоционального сомнения».

КРИПТО-ИНДУКТИВИСТ: Продолжайте.

ДЭВИД: Неправильное представление о самой природе аргумента и объяснения. Кажется, что вы допускаете, что аргументы и объяс­нения, которые оправдывают действия в соответствии с конкретной теорией, имеют форму математических доказательств, направленных от допущений к выводам. Вы ищете «сырье» (аксиомы), из которого мы делаем выводы (теоремы). Логическая структура такого типа, свя­занная с каждым удачным аргументом или объяснением, действительно  {168}  существует. Но процесс доказательства не начинается с «аксиом» и не заканчивается «выводом». Он скорее начинается где-то посредине с варианта, изобилующего несоответствиями, пробелами, неопределен­ностями и неуместными выкладками. Все эти недостатки подвергают критике. Делаются попытки заменить ошибочные теории. Теории, ко­торые критикуют и заменяют, обычно содержат некоторые аксиомы. Поэтому ошибочно полагать, что доказательство начинается с теорий, которые, в конечном итоге, служат его «аксиомами», или что эти теории оправдывают доказательство. Доказательство заканчивается — экспе­риментально — когда кажется, что оно показало удовлетворительность связанного с ним объяснения. Принятые «аксиомы» не являются окон­чательными и неоспоримыми убеждениями. Это просто эксперимен­тальные объяснительные теории.

КРИПТО-ИНДУКТИВИСТ: Понятно. Доказательство — это нечто, отличное от дедукции и несуществующей индукции. Оно ни на чем не основывается и ничем не оправдывается. Да этого и не нужно, потому что его цель — решать задачи, показать, что данное объяснение решает данную задачу.

ДЭВИД: Добро пожаловать в нашу компанию.

ЭКС-ИНДУКТИВИСТ: Все эти годы я чувствовал себя так уверен­но в своей великой Задаче. Я чувствовал себя настолько выше древних индуктивистов и выскочки Поппера. И все это время я сам был крипто-индуктивистом, даже не подозревая этого! Индуктивизм — действи­тельно болезнь. Он ослепляет.

ДЭВИД: Не судите себя слишком строго. Теперь вы излечились. Если бы только всех остальных больных можно было излечить столь же легко с помощью простого аргумента!

ЭКС-ИНДУКТИВИСТ: Но как я мог быть столь слеп? Только по­думать, что я как-то номинировал Поппера на Дерридовскую премию за Нелепые Утверждения в то время, как он решил задачу индукции! О mea culpa! Спаси нас Бог, ибо мы сожгли святого! Мне ужасно стыдно. Я не вижу иного выхода, кроме как спрыгнуть с башни.

ДЭВИД: Я уверен, что в этом нет необходимости. Мы, последова­тели Поппера, считаем, что вместо нас должны умирать наши теории. Просто выбросите с башни индуктивизм.

ЭКС-ИНДУКТИВИСТ: Так я и сделаю!  {169} 

ТЕРМИНОЛОГИЯ

Крипто-индуктивист — человек, который считает, что необос­нованность индуктивного рассуждения поднимает серьезную философ­скую задачу, а именно, как оправдать то, что мы полагаемся на науч­ные теории.


Следующее, четвертое основное направление, — теория эволюции, которая отвечает на вопрос «что такое жизнь?»  {170} 




ГЛАВА 8.

Важность жизни

С древнейших времен почти до девятнадцатого века считалось до­казанным, что требуется какая-то особая оживляющая сила или ожив­ляющий фактор, чтобы заставить материю, из которой состоят живые организмы, вести себя весьма отлично от другой материи. В дейст­вительности это означало бы, что во вселенной существует два вида материи: живая материя и неживая материя с существенно отличаю­щимися физическими свойствами. Рассмотрим живой организм, напри­мер, медведя. Фотография медведя в некоторых отношениях похожа на живого медведя. Точно так же на него похожи все неживые объекты, например, мертвый медведь или, весьма ограниченно, созвездие Боль­шой Медведицы. Но только живая материя может погнаться за вами в лесу, когда вы прячетесь за деревьями, поймать вас и разорвать на куски. Неживые предметы никогда не делают ничего столь целенаправ­ленного — по крайней мере, так думали в древности. Конечно, древние люди никогда не видели управляемых ракет.

Для Аристотеля и других древних философов наиболее заметным качеством живой материи была её способность инициировать движе­ние. Они полагали, что когда неживая материя, например, камень, на­ходится в состоянии покоя, она не придет в движение, пока кто-нибудь не окажет на неё воздействие. Но живая материя, например, медведь в состоянии зимней спячки, может находиться в состоянии покоя, а за­тем начать двигаться без оказываемого на него воздействия. Благода­ря современной науке мы легко можем обнаружить слабые места таких обобщений, и даже сама идея «инициации движения» теперь кажется по­нятой ошибочно: мы знаем, что медведь просыпается из-за электрохи­мических процессов, происходящих в его теле. Они могут возникнуть из-за внешних «воздействий», например, повышения температуры, или под влиянием внутренних биологических часов, которые задействуют медленные химические реакции для сохранения ритма. Химические ре­акции — не более чем движение атомов, поэтому медведь никогда не  {171}  находится в состоянии полного покоя. С другой стороны, ядро урана, ко­торое живым определенно не является, может оставаться неизменным в течение миллиардов лет, а потом, без какого бы то ни было влияния резко и внезапно изменит свою структуру. Таким образом, основное содержание идеи Аристотеля сегодня ничего не стóит. Однако он верно уловил одну важную вещь, которую большинство современных мысли­телей понимают неправильно. Пытаясь связать жизнь с основной физи­ческой концепцией (хотя и ошибочной — движением), он признал, что жизнь — это фундаментальное явление природы.

Явление «фундаментально», когда от его понимания зависит доста­точно глубокое понимание мира. Мнения относительно того, какие ас­пекты мира стóит понять, а следовательно, и относительно того, что является глубоким и фундаментальным, безусловно разделяются. Одни говорят, что любовь — самое фундаментальное явление в мире. Другие считают, что когда человек выучит наизусть определенные священные тексты, он поймет все, что стóит понять. Понимание, о котором говорю я, выражается в законах физики, в принципах логики и философии. «Бо­лее глубокое» понимание — это понимание, которое обладает бóльшей обобщенностью, содержит больше связей между, на первый взгляд, раз­личными истинами, объясняет больше с меньшим количеством необъ­ясненных допущений. Самые фундаментальные явления входят в объ­яснение многих других явлений, но их можно объяснить только с по­мощью основных законов и принципов.

Не все фундаментальные явления имеют значительные физические следствия. Гравитация имеет такие следствия и, действительно, явля­ется фундаментальным явлением. Но прямые следствия квантовой ин­терференции, например, картины теней, описанные в главе 2, не столь велики. Их даже достаточно сложно обнаружить точно. Тем не менее, мы видели, что квантовая интерференция — фундаментальное явле­ние. Только поняв его, мы можем понять основной факт о физической реальности — существование параллельных вселенных.

Для Аристотеля было очевидно, что теоретически жизнь — фунда­ментальна и имеет значительные физические следствия. Как мы уви­дим, он был прав. Но эта очевидность имела весьма ошибочные причи­ны: предположительно отличные механические свойства живой мате­рии и превосходство земной поверхности из-за жизненных процессов. Аристотель полагал, что вселенная главным образом состоит из того, что сейчас мы называем биосферой (область, содержащая жизнь) Земли,  {172}  с некоторыми дополнительными вкраплениями — небесными сфе­рами и внутренней частью Земли, — прикрепленными сверху и снизу. Если биосфера Земли — для вас основная составляющая космоса, вы, естественно, будете думать, что деревья и животные по крайней мере так же важны, как скалы и звезды в великой схеме всего, особенно если вы не очень хорошо знаете физику или биологию. Современная наука привела к почти противоположному выводу. Революция Копер­ника определила Землю в подчинение к центральному неживому Солн­цу. Последующие открытия в физике и астрономии показали не только, что вселенная огромна по сравнению с Землей, но и что она с огром­ной точностью описана всеобъемлющими законами, которые вообще не упоминают о жизни. Теория эволюции Чарльза Дарвина объяснила про­исхождение жизни на языке, не требующем особой физики, и с тех пор мы открыли множество подробных механизмов жизни, но ни в одном из них также не обнаружили особой физики.

Этот захватывающий научный прогресс и, в частности, великое обобщение физики Ньютона и физики, последовавшей за ней, в значи­тельной мере поспособствовали росту притягательности редукционизма. С тех пор, как обнаружили, что вера в открывшиеся истины несов­местима с рационализмом (который требует открытости для критики), многие люди продолжали мечтать о первичной основе всего, в которую они могли бы верить. Если у них ещё и не было упрощенной «теории всего», в которую они могли бы верить, то они, по крайней мере, стре­мились к ней. Считалось доказанным, что редукционистская иерархия наук, основанная на дробноатомной физике, — неотъемлемая часть на­учного мировоззрения, и потому её критиковали только псевдоученые и те, кто протестовал против самой науки. Таким образом, ко време­ни моего изучения биологии в школе статус этого предмета изменился на противоположный тому, что Аристотель считал очевидным. Жизнь вовсе перестали считать фундаментальной. Сам термин «изучение при­роды», под которым подразумевали биологию, стал анахронизмом. Го­воря фундаментально, природой была физика. Я упрощу лишь немного, если охарактеризую общепринятый в то время взгляд следующим обра­зом. У физики есть ответвление — химия, изучающая взаимодействие атомов. У химии есть ответвление — органическая химия, изучающая свойства соединений углерода. Органическая химия, в свою очередь, тоже имеет ответвление — биологию, изучающее химические процес­сы, которые мы называем жизнью. И это отдаленное ответвление  {173}  фун­даментального предмета интересовало нас лишь потому, что мы сами оказались таким процессом. Физика же, напротив, считалась очевидно важной по праву, так как вся вселенная, включая жизнь, подчиняется её принципам.

Моим одноклассникам и мне приходилось учить наизусть множес­тво «характеристик живых организмов». Все они были просто описа­тельными. Они мало касались фундаментальных концепций. Вероятно, передвижение было одной из таких характеристик — неясным эхом идеи Аристотеля, — однако среди них были и дыхание, и выделение. Также присутствовали воспроизведение, рост и незабвенно названная раздражимость, которая значит, что если вы окажете воздействие на что-либо, то оно окажет ответное воздействие. Этим мнимым харак­теристикам не хватало ясности и глубины, более того, точностью они тоже не отличались. Как бы сказал нам доктор Джонсон, каждый ре­альный объект «раздражим». С другой стороны, вирусы не дышат, не растут, не выделяют и не движутся (пока на них не окажут воздей­ствие), но они живые. Бесплодные люди не размножаются, и, тем не менее, они живые.

Причина, по которой ни взгляды Аристотеля, ни то, что было на­писано в моих школьных учебниках, не представили хотя бы хорошее систематическое различие между живыми и неживыми предметами, не говоря уже о чем-то более глубоком, в том, что и Аристотель, и учеб­ники упустили то, что такое живые предметы (эта ошибка в большей степени простительна Аристотелю, потому что в его времена больше не знал никто). Современная биология не пытается определить жизнь с помощью некоторого характеристического физического свойства или вещества — некой живой «сущности», — которой наделена только жи­вая материя. Мы уже не ожидаем, что такая сущность существует, потому что теперь мы знаем, что «живая материя», материя в форме живых организмов, — это не основа жизни. Она всего лишь одно из следствий жизни, которая имеет молекулярную основу. Общепризнан факт существования молекул, которые побуждают определенные среды к созданию копий этих молекул.

Такие молекулы называются репликаторами. В более общем смыс­ле репликатор — это любой объект, который побуждает определенные среды его копировать. Не все репликаторы биологические, и не все репликаторы — молекулы. Самокопирующая компьютерная программа (например, компьютерный вирус) — это тоже репликатор. Хорошая  {174}  шутка — это ещё один репликатор, поскольку она заставляет слуша­телей пересказать себя другим слушателям. Ричард Доукинс придумал термин мим[13] для репликаторов, которые представляют собой челове­ческие идеи, например, шутки. Однако вся жизнь на Земле основана на репликаторах-молекулах. Они называются генами, а биология — это изучение происхождения, структуры и деятельности генов, а также их влияния на другую материю. В большинстве организмов ген состоит из последовательности более мелких молекул (существует четыре различ­ных вида таких молекул), соединенных в цепочку. Названия составля­ющих молекул (аденин, цитозин, гуанин и тимин) обычно сокращают до А, Ц, Г и Т. Сокращенное химическое название цепочки из любого количества молекул, расположенных в любом порядке, — ДНК.

В действительности, гены — это компьютерные программы, вы­раженные в виде последовательности символов А, Ц, Г и Т на стан­дартном языке, называемом генетическим кодом, который одинаков, с небольшими изменениями, для всей жизни на Земле. (Некоторые ви­русы основаны на родственном типе молекул, РНК, тогда как прионы, в некотором смысле, — самовоспроизводящиеся белковые молекулы). Особые структуры внутри клеток каждого организма действуют как компьютеры, выполняя заложенные в этих генах программы. Выпол­нение заключается в производстве определенных молекул (белков) из более простых молекул (аминокислот) при определенных внешних усло­виях. Например, последовательность «АТГ» — это команда для вклю­чения метионина аминокислоты в создаваемую белковую молекулу.

Обычно ген химически «включается» в определенных клетках те­ла, а затем дает этим клеткам команды производить соответствующий белок. Например, гормон инсулин, который отвечает за уровень сахара в крови у позвоночных, является именно таким белком. Производя­щий его ген присутствует почти в каждой клетке тела, но включается только в строго определенных клетках поджелудочной железы и толь­ко тогда, когда это необходимо. На молекулярном уровне это все, что любой ген способен заложить в свой клеточный компьютер: произвес­ти определенный химический продукт. Но гены успешно выполняют свои репликаторные функции, потому что эти химические программы низкого уровня, создавая слой за слоем комплексный контроль и об­ратную связь, в сумме составляют сложные команды высокого уровня.  {175}  Ген инсулина и гены, которые включают и отключают его, вместе эк­вивалентны полной программе регулирования уровня сахара в крови.

Точно так же существуют гены, которые содержат особые коман­ды, как и когда должны быть скопированы они сами, а также другие гены и команды для производства следующих организмов того же ви­да, включая молекулярные компьютеры, которые вновь выполнят все эти команды в следующем поколении. Также существуют команды, со­общающие, каким образом весь организм в целом должен реагировать на раздражители, например, когда и как он должен охотиться, есть, спариваться, драться или убегать. И так далее.

Ген способен функционировать как репликатор только в опреде­ленных средах. По аналогии с экологической «нишей» (набором сред, в которых организм может выжить и произвести потомство) я исполь­зую термин ниша для набора всех возможных сред, которые данный репликатор побуждал бы к созданию его копий. Ниша гена инсулина содержит среды, где ген расположен в клеточном ядре вместе с дру­гими определенными генами, а сама клетка должным образом распо­ложена внутри функционирующего организма, в естественной среде, подходящей для поддержания жизни и размножения этого организма. Но существуют также и другие среды, например, биотехнологические лаборатории, в которых бактерии генетически изменяют так, чтобы включить их в ген, что также копирует ген инсулина. Такие среды то­же являются частью генной ниши, как и бесконечное множество других возможных сред, весьма отличных от тех, в которых развился ген.

Не все, что можно скопировать, является репликатором. Реплика­тор побуждает свою среду к тому, чтобы она его скопировала: то есть, он делает причинный вклад в свое собственное копирование. (Моя тер­минология немного отличается от терминологии Доукинса. Он называет репликатором все, что копируется, по любой причине. То, что я назы­ваю репликатором, он назвал бы активным репликатором). Я ещё вер­нусь к тому, что, в общем, значит делать причинный вклад во что-либо, но здесь я имею в виду, что присутствие и особая физическая форма репликатора очень важны для того, происходит копирование или нет. Другими словами, если репликатор присутствует, то он копируется, но если бы его заместил почти любой другой объект, даже довольно похо­жий, этот объект не был бы скопирован. Например, ген инсулина по­буждает лишь один маленький этап в огромном сложном процессе своей собственной репликации (этот процесс и есть весь жизненный цикл  {176}  организма). Однако подавляющее большинство вариантов этого гена не дали бы клеткам команды произвести химический продукт, который смог бы выполнить работу инсулина. Если гены инсулина в клетках отдельного организма заместить слегка отличными молекулами, этот организм умрет (если только в нем не поддерживать жизнь с помо­щью других средств), а, следовательно, он не оставит потомства, и эти молекулы не будут скопированы. Таким образом, копирование весьма чувствительно к физической форме гена инсулина. Присутствие это­го гена в должной форме и должном месте очень важно для процесса копирования, который делает его репликатором, хотя существует мно­жество других причин, которые делают свой вклад в его репликацию.

Наряду с генами беспорядочные последовательности А, Ц, Г и Т, иногда называемые дефективными последовательностями, присут­ствуют в ДНК большинства живых организмов. Они также копиру­ются и передаются организмам потомков. Однако, если такая после­довательность замещается почти любой другой последовательностью похожей длины, она тоже копируется. Таким образом, мы можем сде­лать вывод, что копирование таких последовательностей не зависит от их особой физической формы. В отличие от генов, дефективная после­довательность программой не является. Если он и выполняет какую-то функцию (а это неизвестно), то эта функция не может заключаться в переносе любой информации. Хотя такая последовательность копиру­ется, она не вносит причинный вклад в свое собственное копирование, и, следовательно, не является репликатором.

На самом деле это преувеличение. Все, что копируется должно вно­сить хоть какой-то причинный вклад в это копирование. Дефективные последовательности, например, состоят из ДНК, что позволяет клеточ­ному компьютеру их копировать. Клеточный компьютер не может ко­пировать молекулы, отличные от молекул ДНК. Вряд ли стóит считать что-либо репликатором, если его причинный вклад в свою собственную репликацию мал, хотя строго говоря, репликация зависит от степени адаптации. Я определю степень адаптации репликатора к данной сре­де как степень вклада, сделанного репликатором в процесс своей собст­венной репликации в этой среде. Если репликатор хорошо адаптирован к большинству сред ниши, мы можем назвать его хорошо адаптирован­ным к своей нише. Мы только что видели, что ген инсулина в высшей степени адаптирован к своей нише. Дефективная последовательность имеет пренебрежимо малую степень адаптации по сравнению с геном  {177}  инсулина или другими подлинными генами, но она гораздо лучше адап­тирована к этой нише, чем большинство молекул.

Обратите внимание, что для измерения степени адаптации мы должны учесть не только рассматриваемый репликатор, но также и диапазон его возможных вариантов. Чем более чувствительно копиро­вание в данной среде к точной физической структуре репликатора, тем выше адаптация репликатора к этой среде. Для высоко адаптированных репликаторов (которые только и заслуживают названия репликаторов) необходимо рассмотреть только небольшие изменения, потому что при значительных изменениях они уже не будут репликаторами. Так мы размышляем, замещая репликатор объектами, похожими на него в об­щих чертах. Чтобы определить степень адаптации к нише, необходимо рассмотреть степень адаптации репликатора к каждой среде этой ни­ши. Следовательно, необходимо рассмотреть как варианты репликато­ра, так и варианты этой среды. Если бóльшая часть вариантов репли­катора не сумеет побудить бóльшую часть сред ниши к копированию репликатора, значит, наша форма репликатора является веской причи­ной своего собственного копирования в этой нише, что мы и имеем в виду, когда говорим, что он в высшей степени адаптирован к ни­ше. С другой стороны, если большинство вариантов репликатора будут копироваться в большинстве сред ниши, значит, форма нашего репли­катора не слишком важна: копирование все равно произойдет. В этом случае наш репликатор делает небольшой причинный вклад в свое ко­пирование, и его нельзя назвать высоко адаптированным к этой нише.

Таким образом, степень адаптации репликатора зависит не только от того, что репликатор делает в своей действительной среде, но так­же и от того, что делало бы множество других объектов, большинство из которых не существует, во множестве сред, отличных от действи­тельной среды. Мы уже сталкивались с этим любопытным свойством и раньше. Точность передачи в виртуальной реальности зависит не толь­ко от тех реакций, которые действительно выдает машина на то, что действительно делает пользователь, но и от реакций, которые она в дей­ствительности не выдает, на то, что пользователь в действительности не делает. Такая схожесть между жизненными процессами и виртуаль­ной реальностью не совпадение, и я кратко это объясню.

Самый важный фактор, определяющий нишу гена, обычно заклю­чается в том, что репликация гена зависит от присутствия других ге­нов. Например, репликация гена инсулина медведя зависит не только  {178}  от присутствия в теле медведя всех других генов, но также и от при­сутствия во внешней среде генов других организмов. Медведи не мо­гут выжить без пищи, а гены для производства этой пищи существуют только в других организмах.

Различные виды генов, которым для репликации необходимо вза­имодействие друг с другом, часто сосуществуют в длинных цепочках ДНК, ДНК организма. Организм — это нечто, — например, животное, растение или микроб, — о чем на обыденном языке мы думаем как о живом. Но из сказанного мной следует, что «живой», применительно к частям организма, отличным от ДНК, — это, в лучшем случае, титул, носимый по обычаю, а не по закону. Организм не является репликатором: он — часть среды репликаторов, обычно самая важная, после всех остальных генов, часть. Оставшаяся часть среды — это тип естествен­ной среды, которую может занять организм (например, вершина горы или дно океана), и конкретный образ жизни в этой среде (например, охотник или паразит), который дает организму возможность прожить там достаточно долго, чтобы произошла репликация его генов.

На повседневном языке мы говорим о «размножении» организмов; это действительно считалось одной из мнимых «характеристик живых объектов». Другими словами, мы считаем организмы репликаторами. Но это ошибочно. Организмы во время размножения не копируются; и ещё меньше они побуждают свое собственное копирование. Они соз­даются заново по чертежам, заложенным в ДНК организмов родителей. Например, если случайно изменится форма носа медведя, это может изменить весь образ жизни этого медведя, и его шансы на выжива­ние для «размножения» могут как увеличиться, так и уменьшиться. Но у медведя с новой формой носа нет шансов быть скопированным. Если у него будет потомство, то носы его потомков будут обычны­ми. Но стóит только изменить соответствующий ген (если сделать это сразу же после зачатия медведя, необходимо изменить только одну мо­лекулу), и у любого потомка будет не только новая форма носа, но и копии нового гена. Это показывает, что форма каждого носа зависит от этого гена, а не от формы какого-либо предыдущего носа. Таким обра­зом, форма носа медведя не делает причинного вклада в форму носа его потомка. Но форма генов медведя делает вклад как в свое собственное копирование и форму носа медведя, так и в форму носа его потомков.

Таким образом, организм — это непосредственная среда, копиру­ющая реальные репликаторы: гены этого организма. Традиционно нос  {179}  медведя и его берлогу классифицировали бы как живой и неживой объ­екты соответственно. Однако корни этого различия не уходят в какую бы то ни было существенную разницу. Роль носа медведя, в основном, не отличается от роли его берлоги. Ни то, ни другое репликатором не является, хотя постоянно создаются новые примеры и того, и другого. И нос, и берлога — это всего лишь части среды, которой манипулируют гены медведя в процессе своей репликации.

Это понимание жизни, основанное на генах, — рассматривающее организмы как часть среды, окружающей гены, — было неявной осно­вой биологии со времен Дарвина, но его не замечали почти до 1960-х годов и не до конца понимали до появления трудов Ричарда Доукинса The Selfish Gene[14] (1976) и The Extended Phenotype[15] (1982).

Теперь я вернусь к вопросу о том, является ли жизнь фундамен­тальным явлением природы. Я уже предостерег от редукционистского допущения, что исходящие явления, подобные жизни, непременно ме­нее фундаментальны, чем микроскопические физические явления. Тем не менее, все, что я только что говорил о том, что такое жизнь, кажет­ся направленным на то, что это всего лишь побочный эффект в кон­це длинной цепочки побочных эффектов. Дело не только в том, что предсказания биологии, в принципе, сводятся к предсказаниям физики, а в том, что то же самое происходит с объяснениями. Как я уже ска­зал, великие объяснительные теории Дарвина (в современных версиях, предложенных, например, Доукинсом) и современной биохимии явля­ются редуктивными. Живые молекулы — гены — это всего лишь мо­лекулы, которые подчиняются тем же самым законам физики и химии, что и неживые. Они не содержат особого вещества и не имеют особых физических свойств. Они просто оказываются репликаторами в опреде­ленных средах. Свойство репликации в высшей степени контекстуаль­но, то есть оно зависит от замысловатых деталей окружающей среды репликатора: объект может быть репликатором в одной среде и не быть им в другой. Свойство адаптации к нише также зависит не от просто­го физического свойства, присущего репликатору в данное время, а от следствий, которые этот репликатор может вызвать в будущем в гипо­тетических условиях (т. е. в вариантах этой среды). Контекстуальные и гипотетические свойства в сущности производны, поэтому сложно  {180}  понять, каким образом явление, характеризуемое только такими свой­ствами, может быть фундаментальным явлением природы.

Что касается физического влияния жизни, вывод тот же самый: следствия жизни кажутся пренебрежимо малыми. Ведь все мы знаем, что планета Земля — это единственное место во вселенной, где существует жизнь. Безусловно, мы не видели свидетельств существования жизни где-то ещё, поэтому, даже если она достаточно широко распространена, её следствия слишком малы для нашего восприятия. За пределами Зем­ли мы видим активную вселенную, переполненную разнообразными мощными, но абсолютно неживыми процессами. Галактики вращают­ся. Звезды сжимаются, вспыхивают, горят, взрываются и разбиваются на мелкие кусочки. Высокоэнергетические частицы, электромагнитные и гравитационные волны распространяются во всех направлениях. И кажется не очень важным, есть ли среди всех этих титанических про­цессов жизнь. Кажется, что будь там жизнь, она ничуть не повлияла бы ни на один из этих процессов. Если бы огромная солнечная вспышка окружила Землю, что само по себе с точки зрения астрофизики собы­тие значительное, наша биосфера мгновенно стала бы стерильной, но эта катастрофа повлияла бы на Солнце так же, как капля дождя влияет на извергающийся вулкан. Наша биосфера, принимая во внимание её массу, энергию или любую подобную астрофизическую меру её зна­чимости, — пренебрежимо малая частичка даже Земли, да и трюизм астрономии состоит в том, что солнечная система, в сущности, состоит из Солнца и Юпитера. Все остальное (включая Землю) — «просто при­меси». Более того, солнечная система — пренебрежимо малая состав­ляющая нашей Галактики, Млечного Пути, который сам по себе ничем не примечателен среди множества других в известной вселенной. Та­ким образом, кажется, что, как сказал Стивен Хокинг: «Человеческая раса — это всего лишь химический мусор на планете средних разме­ров, которая вращается по орбите вокруг весьма средней звезды, в её внешнем пространстве среди сотен миллиардов галактик».

Таким образом, общепринятое в наше время мнение, что жизнь, далекая от того, чтобы быть в центре, геометрически, теоретически или практически, почти непостижимо неважна. В свете этого биология имеет тот же статус, что и география. Знать план Оксфорда важно для тех, кто в нем живет, но безразлично для тех, кто никогда туда не поедет. Подобным образом кажется, что жизнь — это свойство какой-то узкой области или, возможно, областей вселенной, фундаментальное  {181}  для нас, потому что мы живем, но не имеющее ни теоретической, ни практической фундаментальности в более крупной схеме всего.

Удивительно, но это внешнее проявление вводит в заблуждение. Неправда, что жизнь не важна в своих физических следствиях, да и теоретической производной она не является.

Чтобы сделать первый шаг к объяснению этого, позвольте мне объяснить сделанное мной ранее замечание, что жизнь — это разно­видность формирования виртуальной реальности. Я использовал сло­во «компьютеры» для обозначения механизмов, выполняющих генные программы в живых клетках, но это слишком общая терминология. По сравнению с универсальными компьютерами, которые мы производим искусственно, в некоторых отношениях они делают больше, а в дру­гих — меньше. Их не так уж легко запрограммировать для обработки слов или разложения на множители больших чисел. С другой стороны, они осуществляют очень точное интерактивное управление реакциями сложной среды (организма) на все, что только может с ней произойти. И это управление направлено на то, чтобы вызвать определенное от­ветное воздействие среды на гены (а именно, реплицировать их) так, чтобы суммарное воздействие на них было настолько независимым от происходящего вовне, насколько это возможно. Это больше, чем просто вычисление. Это передача в виртуальной реальности.

Сравнение жизни с человеческой технологией виртуальной реаль­ности не совершенно. Во-первых, хотя гены, как и пользователь вирту­альной реальности, находятся в среде, подробное строение и поведение которой определены программой (которую и заключают в себе сами гены), гены не ощущают нахождения в этой среде, потому что они не способны ни чувствовать, ни ощущать. Поэтому, если организм — это передача в виртуальной реальности, определяемая его генами, то это передача без зрителей. Кроме того, организм не просто передается, он создается. Для этого недостаточно «обмануть» ген, чтобы он поверил, что вне его есть организм. Организм там действительно есть.

Однако эти отличия не важны. Как я уже сказал, вся передача в виртуальной реальности физически производит передаваемую сре­ду. Внутренняя часть любого генератора виртуальной реальности в процессе передачи — это в точности реальная физическая среда, про­изведенная, чтобы иметь свойства, определенные в программе. Дело в том, что мы, пользователи, иногда интерпретируем то, что дает по­хожие ощущения, как другую среду. Что касается отсутствия  {182}  пользователя, давайте явно рассмотрим его роль в виртуальной реальнос­ти. Во-первых, воздействовать на передаваемую среду, чтобы ощутить ответное воздействие — другими словами, независимо взаимодейство­вать со средой. В биологии эту роль играет внешняя среда обитания. Во-вторых, обеспечить намерение, стоящее за передачей. Это все равно, что сказать, что бессмысленно говорить о конкретной ситуации как о передаваемой в виртуальной реальности, если не существует понятия точности или неточности передачи. Я сказал, что точность передачи — это близость (как её воспринимает пользователь) переданной среды к той, которую намеревались передать. Но что значит точность для среды, которую никто не воспринимает и не намеревается передать? Точностью здесь является степень адаптации генов к своей нише. Сле­дуя теории эволюции Дарвина, мы можем сделать вывод о «намерении» генов передать среду, которая будет их реплицировать. Гены выми­рают, если не осуществляют это «намерение» так же эффективно или решительно, как конкурирующие с ними гены.

Таким образом, жизненные процессы и передачи в виртуальной ре­альности, хотя, на первый взгляд, и далекие друг от друга, оказываются процессом одного рода. И те и другие содержат физическое воплоще­ние общих теорий об окружающей среде. В обоих случаях эти теории используют для понимания этой среды и интерактивного управления не только её непосредственным внешним проявлением, но и детальной реакцией на общие раздражители.

Гены содержат знание о своих нишах. Все, что имеет фундамен­тальную важность относительно явления жизни, зависит от этого свой­ства, а не от репликации как таковой. Таким образом, теперь мы можем попытаться расширить обсуждение за пределы репликаторов. В принципе, можно представить вид, гены которого неспособны к ре­пликации, но вместо этого адаптированы к сохранению своей физичес­кой формы, неизменной при постоянной самостоятельности и защите от внешних воздействий. Маловероятно, что такой вид будет развивать­ся естественно, но его можно было бы создать искусственно. Точно так же как степень адаптации репликатора определяется как степень причинного вклада, который он делает в свою собственную реплика­цию, можно определить степень адаптации этих нерепликантных генов как степень вклада, который они делают в свое собственное выжива­ние в конкретной форме. Рассмотрим вид, генами которого являются узоры, вытравленные в алмазе. Обычный алмаз случайной формы  {183}  может выживать в течение многих эр, в широком диапазоне условий, но его форма не адаптирована к выживанию, потому что алмаз другой формы тоже выживет в похожих условиях. Но если гены нашего ги­потетического вида, закодированные в алмазе, заставят организм вес­ти себя таким образом, что, например, защитят вытравленную поверх­ность алмаза от коррозии во враждебной среде, от других организмов, пытающихся вытравить на его поверхности другую информацию или от воров, которые разрежут его, отполируют и сделают из него дра­гоценный камень, то алмаз будет содержать истинные адаптации для выживания в этих средах. (Кстати, драгоценный камень действитель­но обладает степенью адаптации для выживания в среде современной Земли. Люди ищут необработанные алмазы и изменяют их форму, соз­давая драгоценные камни. Но ведь люди ищут драгоценные камни и сохраняют их форму. Так что в этой среде форма драгоценного камня делает причинный вклад в свое собственное выживание).

Как только остановится производство этих искусственных орга­низмов, множество примеров каждого нерепликантного гена уже не сможет увеличиться. Но оно и не уменьшится, пока знание, которое со­держат эти гены, будет достаточным для проведения стратегии выжи­вания этих генов в занимаемой ими нише. В конце концов, достаточно крупная перемена в среде обитания или истощение, вызванное несчаст­ными случаями, может стереть этот вид с лица Земли, но вместе с тем он может выживать так же долго, как множество видов, возникающих естественным путем. Гены таких видов обладают всеми свойствами реальных генов, кроме репликации. В частности, они содержат знание, необходимое, чтобы передать их организмы точно так же, как это де­лают реальные гены.

Общим фактором между репликантными и нерепликантными ге­нами является выживание знания, а не обязательно гена или любого другого физического объекта. Поэтому, строго говоря, к нише адап­тируется или не адаптируется какая-то часть знания, а не физический объект. Если адаптация происходит, то у этого знания появляется свой­ство: однажды реализовавшись в этой нише, знание будет стремиться оставаться там. В случае с репликатором физический материал, его реализующий, непрерывно изменяется: новая копия собирается из не­репликантных составляющих при каждой репликации. Нерепликантное знание также может успешно реализовываться в различных физических формах, как, например, когда запись классического звука переводится  {184}  с виниловой пластинки на магнитную ленту, а потом на компакт-диск. Можно представить другой искусственный живой организм с нерепликантной основой, который поступал бы точно так же, используя каждую возможность для копирования знания, содержащегося в его генах, на самую надежную из доступных ему сред. Может быть, однажды это сделают наши потомки.

Я считаю неправильным называть организмы этих гипотетичес­ких видов «неживыми», однако терминология не так уж важна. Дело в том, что несмотря на то, что вся известная жизнь основана на репликаторах, она строится вокруг одного явления — знания. Мы можем дать определение адаптации непосредственно на основе знания: объект адаптируется к своей нише, если реализует знание, заставляющее эту нишу сохранять существование этого знания. Итак, мы приближаемся к причине фундаментальности жизни. Жизнь состоит в физической ре­ализации знания, а в главе 6 мы встречали закон физики, принцип Тью­ринга, который также заключается в физической реализации знания. Он гласит, что можно реализовать законы физики, в их применимости к каждой физически возможной среде, в программах для генератора виртуальной реальности. Гены и есть эти программы. И не только они, но и все остальные программы виртуальной реальности, которые физи­чески существуют или когда-либо будут существовать, — это прямые или косвенные следствия жизни. Например, программы виртуальной реальности, обрабатываемые нашими компьютерами или нашим моз­гом, — это косвенные следствия человеческой жизни. Таким образом, жизнь — это средство (по-видимому, необходимое средство) реализа­ции в природе следствий, о которых говорит принцип Тьюринга.

Это обнадеживает, но ещё недостаточно для того, чтобы определять жизнь как фундаментальное явление. Я всё ещё не определил, что сам принцип Тьюринга имеет статус фундаментального закона. Скептик мог бы поспорить, что он не имеет такого статуса. Это закон о физи­ческой реализации знания, и скептик мог бы посчитать, что знание — это понятие скорее ограниченное антропоцентрическое, чем фундамен­тальное. То есть знание — это одна из тех вещей, которые важны для нас из-за того, чем мы являемся — животными, чья экологическая ни­ша зависит от создания и применения знания, — но которые не важны в абсолютном смысле. Для коалы, экологическая ниша которого зависит от эвкалиптовых листьев, важен эвкалипт; для обладающих знанием приматов Homo sapiens важно знание.  {185} 

Но скептик ошибся бы. Знание важно не только для Homo sapiens и не только на планете Земля. Я говорил, что наличие или отсутствие значительного физического влияния какого-либо объекта не является решающим для его фундаментальности в природе. Но это существенно. Давайте рассмотрим астрофизические следствия знания.

Теория звездной эволюции — структуры и развития звезд — одна из успешных историй науки. (Обратите внимание на несоответствие терминологии. Слово «эволюция» в физике означает развитие или прос­то движение, а не изменение и отбор). Всего лишь век назад неизвестен был даже источник солнечной энергии. Лучшая физика того времени да­вала только ложный вывод, что каким бы ни был источник его энергии, Солнце сможет светить не больше ста миллионов лет. Интересно, что геологи и палеонтологи уже знали из ископаемых свидетельств жизни, что Солнце должно было светить на Земле, по крайней мере, миллиард лет. Затем была открыта ядерная физика, которую полностью приме­нили к физике внутренних областей звезд. С тех пор сформировалась теория звездной эволюции. Сейчас мы понимаем, почему звезды све­тят. Для большинства типов звезд мы можем определить температу­ру, цвет, яркость и диаметр на каждой стадии существования звезды, узнать длительность каждой стадии, сказать, какие элементы звезда создает в процессе ядерной трансмутации и т. д. Эта теория была про­верена и подтверждена наблюдениями Солнца и других звезд.

Мы можем использовать эту теорию для предсказания будущего развития Солнца. Она гласит, что Солнце будет продолжать светить с большой стабильностью в течение ещё приблизительно пяти милли­ардов лет; затем его настоящий диаметр увеличится примерно в сто раз, и оно станет гигантской красной звездой; затем оно будет пульси­ровать, вспыхнет, превратившись в новую звезду, разрушится и осты­нет, в конечном итоге, став черным карликом. Но произойдет ли все это с Солнцем на самом деле? Неужели каждая звезда такой же мас­сы и состава, которая сформировалась за несколько миллиардов лет до Солнца, уже стала красным гигантом, как предсказывает теория? Или возможно ли, что некоторые, на первый взгляд, неважные химические процессы на малых планетах, которые вращаются по орбите этих звезд, могли изменить течение ядерных и гравитационных процессов с неиз­меримо большей массой и энергией?

Если Солнце станет красным гигантом, оно поглотит и разрушит Землю. И если к тому времени на Земле все ещё, физически или  {186}  интеллектуально, будут жить наши потомки, они, скорее всего, не захотят, чтобы это произошло. Они будут делать все, что в их силах, чтобы предотвратить это.

Очевидно ли то, что они ничего не смогут сделать? Безусловно, наша современная технология слишком ничтожна, чтобы сделать это. Но ни наша теория звездной эволюции, ни какая-то другая известная нам физика не дает причины считать, что эта задача невозможна. На­против, мы уже знаем в общих чертах, в чем она будет заключать­ся (а именно, в удалении материи с Солнца). И у нас есть несколько миллиардов лет, чтобы усовершенствовать наши полусырые планы и применить их на практике. Если наши потомки спасут себя таким об­разом, значит наша современная теория звездной эволюции в примене­нии к конкретной звезде дает абсолютно неправильный ответ. А при­чина этого заключается в том, что она не учитывает влияние жизни на звездную эволюцию. Она учитывает такие фундаментальные физи­ческие влияния как ядерные и электромагнитные силы, гравитация, гидростатическое и радиационное давление, но не жизнь.

Похоже, что знание, необходимое для управления Солнцем, не смогло бы развиться только путем естественного отбора, поэтому имен­но от присутствия разумной жизни зависит будущее Солнца. На это можно возразить, что необоснованно допускать, что разум выживет на Земле в течение нескольких миллиардов лет, и даже если выживет, то ещё большее допущение считать, что он будет обладать знанием, необ­ходимым для управления Солнцем. Одна из современных точек зрения заключается в том, что разумная жизнь на Земле уже сейчас нахо­дится в опасности саморазрушения, если не от ядерной войны, то от какого-нибудь побочного следствия технического прогресса или науч­ного исследования. Многие люди считают, что если разумной жизни суждено выжить на Земле, то это может произойти только путем по­давления технического прогресса. Поэтому они, возможно, боятся, что наше развитие технологии, необходимое для управления звездами, не­совместимо с длительностью выживания, достаточной для использова­ния этой технологии, и, следовательно, так или иначе, предопределено, что жизнь на Земле не повлияет на эволюцию Солнца.

Я уверен, что этот пессимизм присущ введенным в заблуждение людям. Как я объясню в главе 14, существует множество причин по­лагать, что наши потомки, в конце концов, будут управлять Солнцем и даже больше. Вероятно, мы не можем предвидеть ни их технологию,  {187}  ни их желание. Возможно, они захотят спастись, покинув солнечную систему или заморозив Землю, или с помощью множества методов, не­постижимых для нас и не имеющих ничего общего с гибелью вместе с Солнцем. С другой стороны, они могут захотеть управлять Солнцем задолго до того, когда понадобится предотвратить его переход в фа­зу красного гиганта (например, чтобы более эффективно использовать его энергию или чтобы добывать с его помощью сырье для расширения своего жизненного пространства). Однако положение, которое я здесь доказываю, зависит не от нашей способности предсказывать то, что произойдет. Оно зависит только от того, что то, что произойдет, будет зависеть от того знания, которым будут обладать наши потомки и от того, как они его применят. Таким образом невозможно предсказать бу­дущее Солнца, не принимая во внимание будущее Земли и, в частности, будущее знания. Цвет Солнца через десять миллиардов лет зависит от гравитации и радиационного давления, от конвекции и нуклеосинтеза. Он совсем не зависит от геологии Венеры, химии Юпитера или рисунка кратеров на Луне. Но он зависит от того, что произойдет с разумной жизнью на планете Земля. Он зависит от политики, экономики и ре­зультатов войн. Он зависит от того, что делают люди: какие решения они принимают, какие проблемы решают, какие ценности выбирают и как ведут себя по отношению к детям.

Невозможно избежать этого вывода, принимая пессимистическую теорию относительно перспектив нашего выживания. Такая теория не следует ни из законов физики, ни из любого другого известного нам фундаментального принципа: её можно доказать только на человечес­ком языке высокого уровня (например, «научное знание опередило мо­ральное знание» или что угодно ещё). Таким образом, рассуждая на основе такой теории, человек неявно признает, что для астрофизичес­ких предсказаний необходимы теории о человеческих делах. И даже если попытки человеческой расы выжить, в конце концов, окажутся тщетными, применима ли эта пессимистическая теория ко всему вне­земному разуму во вселенной? Если нет, если некая разумная жизнь, в некой галактике, когда-либо сумеет выжить в течение миллиардов лет, то жизнь важна в громадном физическом развитии вселенной.

Во всей нашей Галактике и во всем мультиверсе звездная эволю­ция зависит от того, развилась ли разумная жизнь и где это произо­шло, а если развилась, то от результатов её войн и от её отношения к своим детям. Например, мы можем приблизительно определить, какие  {188}  пропорции звезд разных цветов (точнее, разных спектральных типов) должны находиться в Галактике. Чтобы это осуществить, мы должны сделать некоторые допущения относительно того, есть ли там разум­ная жизнь и что она делает все это время (то есть, что она не погасила слишком много звезд). В настоящий момент наши наблюдения согласу­ются с тем, что за пределами нашей солнечной системы разумной жиз­ни не существует. Когда наши теории о структуре нашей Галактики станут ещё точнее, мы сможем делать более точные предсказания, но опять только на основе допущений о распределении и поведении разу­ма в Галактике. Если эти допущения будут неточными, мы предскажем неправильное распределение спектральных типов почти так же уверен­но, как если бы нам пришлось сделать ошибку относительно состава внутризвездных газов или массы атома водорода. И если мы обнару­жим определенные аномалии в распределении спектральных типов, это может быть свидетельством присутствия внеземного разума.

Космологи Джон Барроу и Фрэнк Типлер рассмотрели астрофизи­ческие следствия, которые имела бы жизнь, если бы она выжила в тече­ние долгого времени после того, когда Солнце могло бы во всем осталь­ном стать красным гигантом. Они обнаружили, что жизнь, в конечном итоге, внесла бы грандиозные качественные перемены в структуру Га­лактики, а впоследствии, и в структуру всей вселенной. (К этим ре­зультатам я вернусь в главе 14). Итак, ещё раз, любая теория структу­ры вселенной во всех стадиях, за исключением самых ранних, должна принимать во внимание то, что будет или чего не будет делать жизнь к тому времени. Этого нельзя избежать: будущая история вселенной зависит от будущей истории знания. Астрологи всегда верили, что кос­мические события влияют на дела людей: наука в течение многих веков считала, что ни космос не влияет на людей, ни люди на космос. Теперь мы понимаем, что дела людей влияют на космические события.

Стóит поразмышлять над тем, где мы сбились с пути и начали не­дооценивать физическое влияние жизни. Это произошло из-за нашей ограниченности. (Ирония состоит в том, что древние консенсусы избе­гали нашей ошибки, потому что были ещё более ограниченными). Во вселенной, как мы её видим, жизнь не повлияла ни на что, что имело бы хоть какое-то астрофизическое значение. Однако мы видим толь­ко прошлое, и более или менее подробно мы видим только то прошлое, которое находится в пространстве, близком к нам. Чем дальше во все­ленную мы смотрим, тем в более отдаленное прошлое мы заглядываем  {189}  и тем меньше подробностей мы видим. Но даже все прошлое — исто­рия вселенной от Большого Взрыва до настоящего момента — это всего лишь маленькая частица физической реальности. Настоящий момент и Большое Сжатие (если оно произойдет) разделяет, по крайней мере, в десять раз бóльшая история, а может быть, и ещё больше, не говоря уже о других вселенных. Мы не можем наблюдать ни одну из них, но применяя свои лучшие теории к будущему звезд, галактик и вселенной, мы обнаруживаем огромное пространство, на которое может воздейст­вовать жизнь и после долгого воздействия захватить господство над всем, что происходит, точно так же, как сейчас она господствует в био­сфере Земли.

Традиционное доказательство неважности жизни придает слишком большое значение объемным величинам, например, размеру, массе и энергии. В ограниченном прошлом и настоящем такие величины были и остаются хорошей мерой астрофизической важности, но в физике не существует причины, почему это не должно измениться. Более того, сама биосфера уже предоставляет изобилие примеров, противоречащих общей применимости таких мер важности. В третьем столетии до Рож­дества Христова, например, масса человеческой расы составляла около десяти миллионов тонн. Следовательно, можно сделать вывод, что мало­вероятно, что на физические процессы, происходившие в третьем веке до Рождества Христова и приводившие к движению во много раз пре­вышающему эту массу, могло значительно повлиять присутствие или отсутствие людей. Однако в то время была построена Великая Китай­ская Стена, масса которой примерно равна тремстам миллионам тонн. Передвижение миллионов тонн камня — это одна из тех вещей, кото­рыми все время занимаются люди. Сегодня необходимо всего несколь­ко дюжин человек, чтобы выкопать железнодорожный тоннель, убрав миллион тонн земли. (Доказательство этого положения будет ещё более надежным, если мы более справедливо сравним массу передвинутого камня с массой той крошечной частицы мозга инженера или импера­тора, реализующего эти идеи, или мимы, которые заставляют камень сдвинуться). Человеческая раса в целом (или, если пожелаете, её запас Мимов) возможно уже обладает достаточным знанием, чтобы разру­шить целые планеты, если бы от этого зависело её выживание. Даже неразумная жизнь уже много раз значительно трансформировала свою собственную массу поверхности и атмосферы Земли. Весь кислород в нашей атмосфере, например, — около тысячи триллионов тонн — был  {190}  создан растениями и, следовательно, был побочным следствием репли­кации генов, т. е. молекул, потомков единственной молекулы. Жизнь оказывает влияние не потому, что она более крупная, массивная или энергетическая, чем другие физические процессы, а потому что она об­ладает бóльшим знанием. По огромному влиянию, которое знание ока­зывает на результаты физических процессов, оно, по крайней мере, так же важно, как и любая другая физическая величина.

Но существует ли основное физическое различие (которое долж­но существовать, как допускали древние в случае с жизнью) между объектами, несущими знание и объектами, не несущими знание, раз­личие, которое не зависит ни от среды, окружающей объекты, ни от их влияния на отдаленное будущее, а зависит только от непосредственных физических качеств этих объектов? Удивительно, но существует. Что­бы его увидеть, необходимо принять перспективу (множественности вселенных) мультиверса.

Рассмотрим ДНК живого организма, например, медведя, и пред­положим, что где-то в одном из его генов мы обнаруживаем последо­вательность ТЦГТЦГТТТЦ. Эта частная цепочка из десяти молекул, в специальной нише, состоящей из оставшейся части гена и его ниши, является репликатором. Она реализует небольшой, но важный кусо­чек знания. Теперь предположим, ради доказательства, что мы можем найти в ДНК медведя (негенетический) отрезок дефективной последо­вательности, который тоже имеет последовательность ТЦГТЦГТТТЦ. Эту последовательность не стоит называть репликатором, потому что она не делает практически никакого вклада в свою собственную ре­пликацию и не реализует знание. Это случайная последовательность. Итак, у нас есть два физических объекта, два отрезка одной и той же цепочки ДНК, один из которых реализует знание, а другой является случайной последовательностью. Но они физически идентичны. Каким образом знание может быть фундаментальной физической величиной, если один объект обладает им, а другой, физически идентичный перво­му, им не обладает?

Может, так как эти два отрезка в действительности не идентичны. Они только кажутся идентичными, когда на них смотрят из некоторых вселенных, таких, как наша. Давайте посмотрим на них ещё раз так, как они выглядят в других вселенных. Мы не можем наблюдать дру­гие вселенные непосредственно, поэтому нам придется воспользоваться теорией.  {191} 

Нам известно, что ДНК живых организмов естественно подвержена случайным вариациям — мутациям — в последовательности молекул А, Ц, Г и Т. Согласно теории эволюции адаптации в генах, а следователь­но, и само существование генов, зависят от появления таких мутаций. Из-за мутаций популяции любого гена содержат некоторую степень ва­риаций, и особи — носители генов с более высокой степенью адапта­ции стремятся оставить больше потомков, чем другие особи. Большая часть вариаций гена делает его неспособным вызывать свою реплика­цию, потому что измененная последовательность уже не приказывает клетке производить что-то полезное. Остальные вариации просто дела­ют репликацию менее вероятной (т. е. они сужают нишу гена). Однако некоторые могут реализовать новые команды, которые повысят веро­ятность репликации. Таким образом происходит естественный отбор. С каждым поколением вариации и репликации степень адаптации вы­живающих генов стремится к возрастанию. В настоящее время случай­ная мутация, вызванная, например, проникновением космического лу­ча, станет причиной вариации не только внутри популяции организма в одной вселенной, но и между вселенными. Космический «луч» — это высокоэнергетическая дробноатомная частица, и, подобно фотону, ис­пускаемому электрическим фонариком, она перемещается в различных направлениях в различных вселенных. Поэтому, когда частица косми­ческого луча проникает в цепочку ДНК и вызывает мутацию, некото­рые из её двойников в других вселенных не попадают в свои копии цепочки ДНК, а другие проникают в эти цепочки в других местах, вы­зывая, следовательно, другие мутации. Таким образом, проникновение одного космического луча в одну молекулу ДНК в общем случае вызо­вет в различных вселенных огромное количество различных мутаций.

Когда мы размышляем, как конкретный объект может выглядеть в других вселенных, нам не следует заглядывать в мультиверс так да­леко, что распознать двойника этого объекта в другой вселенной станет невозможно. Возьмем, например, отрезок ДНК. В некоторых вселенных совсем нет молекул ДНК. Другие вселенные, содержащие ДНК, настоль­ко не похожи на нашу, что не существует способа распознать, какой от­резок ДНК в этой вселенной соответствует тому отрезку, который мы рассматриваем в нашей вселенной. Бессмысленно задаваться вопросом, как наш конкретный отрезок ДНК выглядит в такой вселенной, поэто­му, во избежание появления такой неопределенности, мы должны рас­сматривать только те вселенные, которые достаточно похожи на нашу.  {192}  Например, мы могли бы рассматривать только те вселенные, в которых существуют медведи и в которых образец ДНК медведя был помещен в устройство для проведения анализа, запрограммированное на распе­чатку десяти букв, представляющих структуру в точно определенной позиции относительно конкретных ориентиров точно определенной це­почки ДНК. Последующее обсуждение не имело бы места, если бы нам пришлось выбирать любой другой разумный критерий распознавания соответствующих отрезков ДНК в близлежащих вселенных.

По любому такому критерию отрезок гена медведя почти во всех близлежащих вселенных должен иметь такую же последовательность, как и в нашей вселенной. Так происходит потому, что, по-видимому, этот ген обладает высокой степенью адаптации, а это значит, что боль­шая часть его вариантов не сумеет скопироваться в большинстве ва­риантов окружающей среды, а потому, не сможет появиться именно на этом участке ДНК живого медведя. Наоборот, когда отрезок ДНК, не несущий знание, подвергается почти любой мутации, мутированный вариант, тем не менее, остается способным к копированию. За многие поколения репликации произойдет множество мутаций, и большинст­во из них не окажут никакого влияния на репликацию. Следовательно, отрезок дефективной последовательности, в отличие от своего генно­го двойника, будет абсолютно гетерогенным в различных вселенных. Также может случиться, что каждая возможная вариация его последо­вательности (т. е. того, что мы должны подразумевать под его последо­вательностью, которая совершенно случайна) будет в равной степени представлена в мультиверсе.

Таким образом, перспектива мультиверса открывает дополнитель­ную физическую структуру ДНК медведя. В этой вселенной она содер­жит два отрезка с последовательностью ТЦГТЦГТТТЦ. Один из них является частью гена, другой не является. В большинстве других близ­лежащих вселенных первый из двух отрезков имеет ту же самую по­следовательность, ТЦГТЦГТТТЦ, как и в нашей вселенной, но второй отрезок сильно отличается в близлежащих вселенных. Таким образом, с перспективы мультиверса два отрезка даже отдаленно не похожи друг на друга (рисунок 8.1).

И вновь размышляя слишком ограниченно, мы пришли к ложному выводу, что объекты, несущие знание, могут быть физически идентич­ны объектам, не несущим знание; а это, в свою очередь, ставит под со­мнение фундаментальность знания. Однако к настоящему моменту мы  {193}  уже почти завершили полный круг. Мы видим, что древняя идея о том, что живая материя имеет особые физические свойства, почти истин­на: физически особенна не живая материя, а материя, несущая знание. В одной вселенной она выглядит нерегулярно; во всех вселенных она имеет регулярную структуру, подобно кристаллу в мультиверсе.

Рис. 8.1. Взгляд из мультиверса на два отрезка ДНК, которые оказывают­ся идентичными в нашей вселенной, один — случайный, другой находится в гене

Таким образом, знание — это всё-таки фундаментальная физичес­кая величина, а явление жизни чуть менее фундаментально.

Представьте, что вы смотрите на молекулу ДНК клетки медведя в электронный микроскоп, пытаясь отличить гены от негенетических последовательностей и оценить степень адаптации каждого гена. В лю­бой одной вселенной это невозможно. Свойство быть геном, т. е. иметь высокую адаптацию, настолько, насколько её можно обнаружить в пре­делах одной вселенной, — чрезвычайно сложно. Это исходящее свойст­во. Вам пришлось бы сделать множество копий ДНК с вариациями, при­менить генную инженерию, чтобы создать множество эмбрионов мед­ведей для каждого варианта ДНК, вырастить этих медведей, поселив их в различные среды, представляющие нишу медведя, и посмотреть, какие медведи оставят больше потомков.

Но с волшебным микроскопом, который мог бы заглянуть в другие вселенные (что, я подчеркиваю, невозможно: мы используем теорию, чтобы представить — или передать — то, что, как нам известно, долж­но там находиться), эта задача стала бы проще. Как на рисунке 8.1, гены отличались бы от «негенов» точно так же, как обрабатываемые поля от­личаются от джунглей на фотографиях, сделанных с воздуха, или как кристаллы, выпавшие в осадок из раствора. Они регулярны во многих близлежащих вселенных, тогда как все «негены», отрезки дефективной последовательности, нерегулярны. Что касается степени адаптации гена,  {194}  оценить её почти так же просто. Гены с лучшей адаптацией будут иметь одну и ту же структуру в более обширном диапазоне вселен­ных — у них будут более крупные «кристаллы».

Теперь давайте отправимся на другую планету и попытаемся най­ти местные формы жизни, если таковые там имеются. И опять это известно сложная задача. Вам пришлось бы провести сложные и изощ­ренные эксперименты, бесконечные ошибки которых стали предметом множества научно-фантастических рассказов. Но если только вы могли бы наблюдать в телескоп весь мультиверс, жизнь и её следствия бы­ли бы очевидны с первого взгляда. Вам всего лишь необходимо искать сложные структуры, которые кажутся нерегулярными в любой одной вселенной, но идентичными во многих близлежащих вселенных. Если вы увидите что-либо подобное, вы обнаружите некое физически реали­зованное знание. Где есть знание, там должна быть жизнь, по крайней мере, в прошлом.

Сравним живого медведя с созвездием Большой Медведицы. Жи­вые медведи во многих близлежащих вселенных анатомически очень схожи. Таким свойством обладают не только их гены, но и все те­ло (хотя другие характеристики тела, например, вес, могут отличать­ся гораздо больше, чем гены; так происходит потому, что, к примеру, в различных вселенных медведь в большей или меньшей степени преус­пел в последних поисках пищи). Но в созвездии Большой Медведицы от одной вселенной к другой не существует такой регулярности. Форма со­звездия — это результат начального состояния галактического газа, из которого формировались звезды. Это состояние было случайным — на микроскопическом уровне весьма различным в разных вселенных — и процесс формирования звезд из этого газа включал всевозможные неустойчивости, увеличившие масштаб вариаций. В результате распо­ложение звезд, которое мы наблюдаем в созвездии, существует только в очень ограниченном диапазоне вселенных. В большинстве близлежа­щих вариантов нашей вселенной в небе тоже есть созвездия, но они выглядят иначе.

И наконец, давайте точно так же посмотрим на вселенную. Что увидит наш магически вооруженный глаз? В отдельной вселенной са­мые поразительные структуры — это галактики и скопления галактик. Но эти объекты не имеют различимой структуры в мультиверсе. Там, где в одной вселенной есть галактика, в мультиверсе собраны мириады галактик с весьма различной географией. И так во всем мультиверсе.  {195}  Ближайшие вселенные похожи только в общих чертах, как того требу­ют законы физики, которые к ним применимы. Таким образом, боль­шинство звезд имеет довольно точную сферическую форму во всем мультиверсе, а большинство галактик имеет спиральную или эллипти­ческую форму. Но ничто не простирается в отдаленные вселенные, не изменив свою детальную структуру до неузнаваемости. Т.е. кроме тех немногих мест, где есть реализованное знание. В таких местах объек­ты простираются через огромное количество вселенных, оставаясь при этом узнаваемыми. Возможно в настоящее время Земля — единствен­ное подобное место в нашей вселенной. В любом случае такие места выделяются, в описанном мной смысле, как места расположения про­цессов (жизни и мышления), породивших самые крупные своеобразные структуры в мультиверсе.

ТЕРМИНОЛОГИЯ

Репликатор — объект, побуждающий определенные среды к сво­ему копированию.

Ген — молекулярный репликатор. Жизнь на Земле основана на генах, которые являются цепочками ДНК (РНК, в случае некоторых вирусов),

Мим — идея, которая является репликатором, например, шутка или научная теория.

Ниша — нишей репликатора является набор всех возможных сред, в которых репликатор вызывает свою собственную репликацию. Ниша организма — это набор всех возможных сред, в которых организм мо­жет жить и размножаться, а также всех возможных образов его жизни.

Адаптация — степень адаптации репликатора к нише — это вы­званная им степень его собственной репликации в этой нише. В общем, объект адаптируется к своей нише в той степени, в которой он реали­зует знание, побуждающее эту нишу сохранять это знание.

РЕЗЮМЕ

Кажется, что научный прогресс со времен Галилео отвергал древ­нюю идею о том, что жизнь — это фундаментальное явление природы. Наука открыла, что масштаб вселенной, по сравнению с биосферой Земли,  {196}  огромен. Кажется, что современная биология подтвердила это отвержение, объяснив жизненные процессы на основе молекулярных репликаторов, генов, поведением которых управляют те же законы физики, которые применимы и к неживой материи. Тем не менее, жизнь связа­на с фундаментальным принципом физики — принципом Тьюринга — поскольку она является средством, с помощью которого виртуальная реальность была впервые реализована в природе. Также, несмотря на видимость, жизнь — это важный процесс на гигантских весах времени и пространства. Будущее поведение жизни определит будущее поведе­ние звезд и галактик. И крупномасштабные регулярные структуры во вселенных существуют там, где развилась материя, несущая знание, такая, как мозг или отрезки генов ДНК.


Эта прямая связь между теорией эволюции и квантовой теори­ей, на мой взгляд, — одна из самых поразительных и неожиданных из множества связей, которые существуют между четырьмя основны­ми нитями. Другая подобная связь — существование самостоятельной квантовой теории вычисления, лежащей в основе существующей тео­рии вычисления. Эта связь — тема следующей главы.  {197} 




ГЛАВА 9

Квантовые компьютеры

Для любого, кто не знаком с этим предметом, квантовое вы­числение звучит как название новой технологии, возможно, самой последней в знаменитом ряду, включающем механическое вычисле­ние, транзисторно-электронное вычисление, вычисление на кремние­вых кристаллах и т. д. Но истина в том, что даже существующие компьютерные технологии зависят от микроскопических квантово-механических процессов. (Конечно, все физические процессы являют­ся квантово-механическими, но здесь я имею в виду только те, для которых классическая — т. е. неквантовая — физика дает очень не­точные предсказания). Если существует тенденция к получению даже более быстрых компьютеров с более компактным аппаратным обеспе­чением, технология должна стать в этом смысле даже более «квантовомеханической» просто потому, что квантово-механические эффекты до­минируют во всех достаточно маленьких системах. Но если бы дело было только в этом, квантовое вычисление вряд ли смогло бы фигури­ровать в любом фундаментальном объяснении структуры реальности, поскольку в нем не было бы ничего фундаментально нового. Все совре­менные компьютеры, какие бы квантово-механические процессы они ни использовали, — всего лишь различные технологические исполне­ния одной и той же классической идеи универсальной машины Тью­ринга. Именно поэтому все существующие компьютеры имеют в сущ­ности один и тот же репертуар вычислений: отличие состоит только в скорости, емкости памяти и устройствах ввода-вывода. Это все рав­но, что сказать, что даже самый непритязательный современный до­машний компьютер можно запрограммировать для решения любой задачи или передачи любой среды, которую могут передать наши самые мощные компьютеры, при условии установки на него дополнительной памяти, достаточно долгом времени обработки и наличии аппаратного обеспечения, подходящего для демонстрации результатов работы.

Квантовое вычисление — это нечто большее, чем просто более быстрая и миниатюрная технология реализации машин Тьюринга.  {198}  Квантовый компьютер — это машина, использующая уникаль­ные квантово-механические эффекты, в особенности, интерференцию, для выполнения совершенно новых видов вычислений, которые, даже в принципе, невозможно выполнить ни на одной машине Тьюринга, а следовательно, ни на каком классическом компьютере. Таким обра­зом, квантовое вычисление — это ни что иное, как принципиально но­вый способ использования природы.

Позвольте мне конкретизировать это заявление. Самыми первыми изобретениями для использования природы были инструменты, управ­ляемые силой человеческих мускулов. Они вывели наших предков на новый этап развития, но страдали от ограничения, которое заключалось в том, что они требовали постоянного внимания и усилий человека во время их использования. Дальнейшее развитие технологии позволило преодолеть это ограничение: люди сумели приручить некоторых жи­вотных и растения, изменив биологическую адаптацию этих организ­мов, приблизив их к человеку. Таким образом, урожай рос, а стороже­вые собаки охраняли дом, пока их владельцы спали. Еще один новый вид технологии появился, когда люди начали не просто использовать существующие адаптации (и существующие небиологические явления, например, огонь), а создали совершенно новые для мира адаптации в ви­де кирпичей, колес, гончарных и металлических изделий и машин. Что­бы сделать это, они должны были поразмыслить и понять законы приро­ды, управляющие вселенной, включая, как я уже объяснил, не только её поверхностные аспекты, но и лежащую в основе структуру реальности. Последовали тысячи лет развития этого вида техники — использование некоторых материалов, сил и энергий физики. В двадцатом веке, когда изобретение компьютеров позволило осуществить обработку сложной информации вне человеческого мозга, к этому списку добавилась инфор­мация. Квантовое вычисление, которое сейчас находится в зачаточном состоянии, — качественно новый этап этого движения. Это будет пер­вая технология, которая позволит выполнять полезные задачи при учас­тии параллельных вселенных. Квантовый компьютер сможет распреде­лить составляющие сложной задачи между множеством параллельных вселенных, а затем поделиться результатами.

Я уже говорил о важности универсальности вычислений — о том, что один физически возможный компьютер может, при наличии до­статочного времени и памяти, выполнить любое вычисление, которое может выполнить любой другой физически возможный компьютер. За­коны  {199}  физики, как мы понимаем их сейчас, допускают универсальность вычисления. Однако, настоящего определения универсальности недо­статочно, чтобы считать её полезной или важной в общей схеме все­го. Она просто означает, что, в конечном итоге, универсальный ком­пьютер сможет делать то, что может делать любой другой компьютер. Другими словами, он универсален при наличии достаточного времени. А что делать, если времени недостаточно? Представьте универсальный компьютер, который мог бы выполнить только одно вычислительное действие за всю жизнь вселенной. Его универсальность по-прежнему оставалась бы глубоким свойством реальности? Вероятно, нет. Говоря в общем, можно критиковать это узкое понятие универсальности, пото­му что оно относит любую задачу к разряду находящихся в репертуаре компьютера, не принимая во внимание физические ресурсы, которые придется израсходовать компьютеру на выполнение этой задачи. Так, например, мы рассмотрели пользователя виртуальной реальности, ко­торый готов отправиться в виртуальную реальность с остановкой мозга на миллиарды лет и повторным его запуском: в течение этого времени компьютер вычислит, что показывать дальше. Такое отношение вполне уместно при обсуждении верхних пределов виртуальной реальности. Но при рассмотрении её полезности, или, что даже более важно, фун­даментальной роли, которую она играет в структуре реальности, нам следует быть более разборчивыми. Эволюция никогда бы не произошла, если бы задача передачи определенных свойств самых первых, простей­ших сред обитания не была легко обрабатываемой (т. е. вычислимой в течение разумного периода времени) при использовании в качестве компьютеров легко доступных молекул. Точно так же никогда не нача­лось бы развитие науки и техники, если бы для создания инструмента из камня понадобились тысячи лет размышлений. Более того, то, что было истиной в самом начале, осталось абсолютным условием прогрес­са на каждом этапе. Универсальность вычислений была бы бесполезна для генов, независимо от количества содержащегося в них знания, если бы передача их организма не была легко обрабатываемой задачей — скажем, если бы один репродуктивный цикл занимал миллиарды лет.

Таким образом, факт существования сложных организмов и непре­рывного ряда постепенно совершенствующихся изобретений и научных теорий (таких, как механика Галилея, механика Ньютона, механика Эйнштейна, квантовая механика, ...) говорит о том, универсальность вычислений какого рода существует в реальности. Он говорит нам, что  {200}  действительные законы физики, по крайней мере, до сих пор, поддают­ся последовательной аппроксимации с помощью теорий, дающих луч­шие объяснения и предсказания, и что задача открытия каждой теории при наличии предыдущей легко решалась с помощью вычислений при наличии уже известных законов и уже имеющейся технологии. Струк­тура реальности должна быть многоуровневой (какой она и была) для более легкого доступа к самой себе. Подобным образом, если рассматри­вать саму эволюцию как вычисление, она говорит нам, что существо­вало достаточно много жизнеспособных организмов, закодированных ДНК, что позволило вычислить (т. е. эволюционировать) организмы с более высокой степенью адаптации, используя ресурсы, предостав­ленные их предками с низкой степенью адаптации. Таким образом, мы можем сделать вывод, что законы физики, кроме того, что удостове­ряют свою собственную постижимость через принцип Тьюринга, га­рантируют, что соответствующие эволюционные процессы, такие, как жизнь и мышление, не являются трудоемкими и требуют не слишком много дополнительных ресурсов, чтобы произойти в реальности.

Итак, законы физики не только позволяют (или, как я доказал, тре­буют) существование жизни и мышления, но требуют от них эффек­тивности, в некотором уместном смысле. Для выражения этого важно­го свойства реальности современные анализы универсальности обычно постулируют компьютеры, универсальные даже в более строгом смыс­ле, чем того потребовал бы в данной ситуации принцип Тьюринга: уни­версальные генераторы виртуальной реальности не только возможны, их можно построить так, что они не потребуют нереально больших ресурсов для передачи простых аспектов реальности. С настоящего мо­мента, говоря об универсальности, я буду иметь в виду именно такую универсальность, пока не приведу другого определения.

Насколько эффективно можно передать данные аспекты реальнос­ти? Другими словами, какие вычисления можно практически выпол­нить за данное время и при данных финансовых возможностях? Это основной вопрос теории вычислительной сложности, которая, как я уже сказал, занимается изучением ресурсов, необходимых для выполнения данных вычислительных задач. Теория сложности всё ещё в достаточ­ной степени не объединена с физикой и потому не дает много коли­чественных ответов. Однако она достигла успеха в определении полез­ного приближенного различия между легко- и труднообрабатываемыми вычислительными задачами. Общий подход лучше всего проиллюстри­ровать  {201}  на примере. Рассмотрим задачу умножения двух достаточно больших чисел, скажем, 4 220 851 и 2 594 209. Многие из нас помнят тот метод умножения, которому мы научились в детстве. Нужно по очере­ди перемножить каждую цифру одного числа на каждую цифру друго­го и, сложив результаты, дать окончательный ответ, в данном случае 10 949 769 651 859. Вероятно, многие не захотят признать, что эта уто­мительная процедура делает умножение «легко обрабатываемым» хоть в каком-то обыденном смысле этого слова. (В действительности, су­ществуют более эффективные методы умножения больших чисел, но этот весьма нагляден). Однако с точки зрения теории сложности, ко­торая имеет дело с массивными задачами, решаемыми компьютерами которые не подвержены скуке и почти никогда не ошибаются, этот ме­тод определенно попадает в категорию «легко обрабатываемых».

В соответствии со стандартным определением для «легкости обра­ботки» важно не действительное время, затрачиваемое на умножение конкретной пары чисел, а важен факт, что при применении того же са­мого метода даже к бóльшим числам, время увеличивается не слишком резко. Возможно это удивит вас, но этот весьма косвенный метод опре­деления легкости обработки очень хорошо работает на практике для многих (хотя и не всех) важных классов вычислительных задач. Напри­мер, при умножении нетрудно увидеть, что стандартный метод мож­но использовать для умножения чисел, скажем, в десять раз больших, приложив совсем незначительные дополнительные усилия. Ради дока­зательства предположим, что каждое элементарное умножение одной цифры на другую занимает у определенного компьютера одну микросе­кунду (включая время, необходимое для сложения, переходов и других операций, сопровождающих каждое элементарное умножение). При ум­ножении семизначных чисел 4 220 851 и 2 594 209 каждую из семи цифр первого числа нужно умножить на каждую из семи цифр второго числа. Таким образом, общее время, необходимое для умножения (если опе­рации выполняются последовательно), будет равно семи, умноженному на семь, или 49 микросекундам. При введении чисел, примерно в де­сять раз больших, содержащих по восемь цифр, время, необходимое для их умножения, будет равно 64 микросекундам: увеличение составляет всего 31%.

Ясно, что числа из огромного диапазона — безусловно содержащего любые числа, которые когда-либо были измерены как численные значе­ния физических переменных — можно перемножить за крошечную долю  {202}  секунды. Таким образом, умножение действительно легко поддается обработке для любых целей в пределах физики (или, по крайней мере, в пределах существующей физики). Вероятно, за пределами физики мо­гут появиться практические причины умножения гораздо бóльших чи­сел. Например, для шифровальщиков огромный интерес представляют произведения простых чисел, состоящих примерно из 125 цифр. Наша гипотетическая машина могла бы умножить два таких простых числа, получив произведение, состоящее из 250 цифр, примерно за одну сотую секунды. За одну секунду она могла бы перемножить два тысячезначных числа, а современные компьютеры легко могут осуществить более точный расчет этого времени. Только некоторые исследователи эзоте­рических областей чистой математики заинтересованы в выполнении таких непостижимо огромных умножений, однако, мы видим, что даже у них нет причины считать умножение трудно обрабатываемым.

Напротив, разложение на множители, по сути процесс, обрат­ный умножению, кажется гораздо сложнее. В начале вводится одно число, скажем, 10 949 769 651 859, задача заключается в том, чтобы найти два множителя, меньших числа, произведение которых равно 10 949 769 651 859. Поскольку мы только что умножили эти числа, мы знаем, что в этом случае ответ будет 4 220 851 и 2 594 209 (и поскольку оба эти числа простые, это единственно правильный ответ). Но не об­ладая таким внутренним знанием, как мы нашли бы эти множители? В поисках простого метода вы обратитесь к детским воспоминаниям, но впустую, поскольку такого метода не существует.

Самый очевидный метод разложения на множители — делить вво­димое число на все возможные множители, начиная с 2 и продолжая каждым нечетным числом, до тех пор, пока введенное число не разде­лится без остатка. По крайней мере, один из множителей (принимая, что введенное число не является простым) не может быть больше квад­ратного корня введенного числа, что позволяет оценить, сколько вре­мени может занять этот метод. В рассматриваемом нами случае наш компьютер найдет меньший из двух множителей, 2 594 209, примерно за одну секунду. Однако, если вводимое число будет в десять раз больше, а его квадратный корень примерно в три раза больше, то разложение его на множители по этому методу займет в три раза больше времени. Другими словами, увеличение вводимого числа на один разряд уже ут­роит время обработки. Увеличение его ещё на один разряд снова утроит это время и т. д. Таким образом, время обработки будет увеличивать­ся  {203}  в геометрической прогрессии, т. е. экспоненциально, с увеличением количества разрядов в раскладываемом на множители числе. Разложе­ние на множители числа с 25-значными множителями по этому методу заняло бы все компьютеры на Земле на несколько веков.

Этот метод можно усовершенствовать, однако всем современным методам разложения числа на множители присуще это свойство экспо­ненциального увеличения. Самое большое число, которое было «в гневе» (а это было действительно так) разложено на множители, — число, мно­жители которого тайно выбрали одни математики, чтобы бросить вы­зов другим математикам, — имело 129 разрядов. Разложение на множи­тели выполнили с помощью сети Интернет глобальными совместными усилиями, задействовав тысячи компьютеров. Дональд Кнут, специа­лист по вычислительной технике, подсчитал, что разложение на мно­жители 250-значного числа при использовании самых эффективных из известных методов, с помощью сети, состоящей из миллиона компью­теров, заняло бы более миллиона лет. Такие вещи трудно оценить, но даже если Кнут чрезмерно пессимистичен, то попробуйте хотя бы взять числа на несколько разрядов большие, и задача во много раз усложнит­ся. Именно это мы имеем в виду, когда говорим, что разложение на множители больших чисел с трудом поддается обработке. Все это весь­ма отличается от умножения, где как мы видели, задачу умножения пары 250-значных чисел можно элементарно решить с помощью домаш­него компьютера. Никто не может даже представить себе, как можно разложить на множители числа, состоящие из тысячи или миллиона разрядов.

По крайней мере, этого никто не мог представить до недавнего времени.

В 1982 году физик Ричард Фейнман занимался компьютерным мо­делированием квантово-механических объектов. Его отправной точкой было нечто, что уже было известно в течение некоторого времени, одна­ко важность чего не оценили, а именно, что задача предсказания пове­дения квантово-механических систем (или, как мы можем это описать, передача квантово-механических сред в виртуальной реальности), в об­щем случае, с трудом поддается обработке. Одна из причин того, что важность этого не оценили, в том, что никто и не ожидал, что предска­зание интересных физических явлений с помощью компьютера будет особо легким. Возьмите, например, прогноз погоды или землетрясения. Несмотря на то, что известны нужные уравнения, сложность их  {204}  применения для реальных ситуаций общеизвестна. Все это недавно вынесли на всеобщее обозрение в популярных книгах и статьях по хаосу и «эф­фекту бабочки». Эти эффекты не ответственны за трудность обработки о которой говорил Фейнман, по простой причине, что они имеют место только в классической физике — т. е. не в реальности, поскольку реаль­ность квантово-механическая. Тем не менее, я хочу сделать несколько замечаний относительно классических «хаотических» движений, толь­ко чтобы подчеркнуть достаточно различный характер невозможности получения классических и квантовых предсказаний.

Теория хаоса касается ограничений получения предсказаний в клас­сической физике, проистекающих из факта внутренней неустойчивости всех классических систем. «Неустойчивость», о которой идет речь, не имеет ничего общего с какой-либо тенденцией буйного поведения или распада. Она связана с чрезмерной чувствительностью к начальным условиям. Допустим, что нам известно настоящее состояние какой-то физической системы, например, комплекта бильярдных шаров, катаю­щихся по столу. Если бы система подчинялась законам классической физики, что она и делает в хорошем приближении, то мы смогли бы определить её будущее поведение (скажем, попадет ли определенный шар в лузу) из соответствующих законов движения точно так же, как мы можем предсказать солнечное затмение или парад планет, исходя из этих же законов. Но на практике мы никогда не можем абсолютно точно определить начальные положения и скорости. Таким образом, возника­ет вопрос: если мы знаем их с некоторой разумной степенью точности, можем ли мы предсказать их будущее поведение с разумной степенью точности? Обычный ответ: не можем. Разница между реальной траек­торией и предсказанной траекторией, вычисленной из слегка неточных данных, стремится расти экспоненциально и нерегулярно («хаотичес­ки») во времени, так что через некоторое время первоначальное состоя­ние, содержащее небольшую погрешность, уже не сможет быть ключом к поведению системы. Компьютерное предсказание говорит о том, что движение планет, классическая предсказуемость в миниатюре, — нети­пичная классическая система. Чтобы предсказать поведение типичной классической системы всего лишь через небольшой промежуток време­ни, необходимо определить начальное состояние этой системы с невоз­можно высокой точностью. Поэтому говорят, что, в принципе, бабочка, находящаяся в одном полушарии, взмахом своих крылышек может вы­звать ураган в другом полушарии. Неспособность дать прогноз погоды  {205}  и тому подобное приписывают невозможности учесть каждую бабочку на планете.

Однако реальные ураганы и реальные бабочки подчиняются не классической механике, а квантовой теории. Неустойчивость, быст­ро увеличивающая небольшие неточности определения классическо­го начального состояния, просто не является признаком квантово-механических систем. В квантовой механике небольшие отклонения от точно определенного начального состояния стремятся вызвать всего лишь небольшие отклонения от предсказанного конечного состояния. А точное предсказание сделать сложно из-за совсем другого эффекта.

Законы квантовой механики требуют, чтобы объект, который первоначально находится в данном положении (во всех вселенных), «рас­пространялся» в смысле мультиверса. Например, фотон и его двойники из других вселенных отправляются из одной и той же точки светящей­ся нити накала, но затем движутся в миллиардах различных направлений. Когда мы позднее проводим измерение того, что произошло, мы тоже становимся отличными друг от друга, так как каждая наша копия видит то, что произошло в её конкретной вселенной. Если рассматрива­емым объектом является атмосфера Земли, то ураган мог произойти, скажем, в 30% вселенных и не произойти в остальных 70%. Субъек­тивно мы воспринимаем это как единственный непредсказуемый или «случайный» результат, хотя если принять во внимание существование мультиверса, все результаты действительно имели место. Это многооб­разие параллельных вселенных — настоящая причина непредсказуемос­ти погоды. Наша неспособность точно измерить начальные состояния тут абсолютно ни при чем. Даже знай мы начальные состояния точ­но, многообразие, а следовательно, и непредсказуемость движения, все равно имели бы место. С другой стороны, в отличие от классического случая, поведение воображаемого мультиверса с немного отличными начальными состояниями не слишком отличалось бы от поведения ре­ального мультиверса: он мог пострадать от урагана в 30,000001% своих вселенных и не пострадать в оставшихся 69,999999%.

В действительности взмах крылышек бабочки не вызывает урага­ны, потому что классическое явление хаоса зависит от совершенного детерминизма, который не присутствует ни в одной вселенной. Рас­смотрим группу идентичных вселенных в тот момент, когда в каждой из них конкретная бабочка взмахнула крылышками вверх. Рассмотрим вторую группу вселенных, которая в этот же самый момент идентична  {206}  первой за исключением того, что в ней крылышки бабочки опуще­ны вниз. Подождем несколько часов. Квантовая механика предсказыва­ет, что если не возникнут исключительные обстоятельства (например, кто-нибудь, наблюдающий за бабочкой, нажмет кнопку, чтобы взорвать ядерную бомбу при взмахе её крылышек), две группы вселенных, прак­тически идентичные друг другу в начале, останутся практически иден­тичными. Но каждая группа внутри самой себя значительно видоизме­нилась. Каждая группа включает вселенные с ураганами, вселенные без ураганов и даже очень маленькое количество вселенных, в которых вид бабочки спонтанно изменился из-за случайной перестановки всех её атомов, или Солнце взорвалось из-за того, что все его атомы слу­чайно вступили в ядерную реакцию в самом его центре. Даже в этом случае эти группы всё ещё очень похожи друг на друга. Во вселенных, где бабочка взмахнула крылышками вверх и произошли ураганы, эти ураганы действительно были непредсказуемы; но они произошли не из-за бабочки, поскольку почти идентичные ураганы произошли в других вселенных, где все было тем же самым, кроме того, что крылышки бабочки были опущены вниз.

Возможно, стóит подчеркнуть различие между непредсказуемос­тью и трудностью обработки. Непредсказуемость не имеет ничего об­щего с имеющимися вычислительными ресурсами. Классические сис­темы непредсказуемы (или были бы таковыми, если бы существовали) из-за их чувствительности к начальным условиям. Квантовые системы не обладают такой чувствительностью, но они непредсказуемы, потому что в различных вселенных ведут себя по-разному, и поэтому в боль­шинстве вселенных кажутся случайными. Ни в первом, ни во втором случае никакой объем вычислений не уменьшит непредсказуемость. Трудность обработки, напротив, — проблема вычислительных ресур­сов. Она относится к ситуации, когда мы с легкостью могли бы сделать предсказание, если бы только могли выполнить необходимые вычисле­ния, но мы не можем их выполнить, потому что требуются нереаль­но большие ресурсы. Чтобы отделить проблемы непредсказуемости от проблем трудности обработки в квантовой механике, мы должны при­нять, что квантовые системы, в принципе, предсказуемы.

Рис. 9.1. Действие обычного зеркала одинаково во всех вселенных

Рис. 9.2. Полупрозрачное зеркало разделяет первоначально идентичные вселенные на две равные группы, которые отличаются только траекторией движения одного фотона

Квантовую теорию часто представляют как теорию, которая дела­ет только вероятностные предсказания. Например, в эксперименте по интерференции со светонепроницаемой перегородкой со щелями, опи­санном в главе 2, можно видеть, что фотон попадает в любое место  {207}  на «светлом» участке картины теней. Однако важно понимать, что для множества других экспериментов квантовая теория предсказыва­ет единственный определенный результат. Другими словами, она пред­сказывает, что все вселенные окончатся с одним и тем же результа­том, даже если на промежуточных стадиях эксперимента эти вселен­ные отличались друг от друга, и она предсказывает, каким будет этот результат. В таких случаях мы наблюдаем неслучайное явление интер­ференции. Такие явления может продемонстрировать интерферометр. Это оптический инструмент, состоящий главным образом из зеркал,  {208}  как обычных (рисунок 9.1), так и полупрозрачных (какими пользуются фокусники и полицейские) (рисунок 9.2). Если фотон ударяется о по­лупрозрачное зеркало, то в половине вселенных он отскакивает от него точно так же, как отскочил бы от обычного зеркала. Однако в другой половине вселенных он проходит сквозь это зеркало, словно его нет.

Рис. 9.3. Один фотон, проходящий через интерферометр. Положение зеркал (обычные зеркала показаны черным цветом, полусеребряные — серым) можно отрегулировать так, что интерференция между двумя разновидностями фотона (из разных вселенных) заставляет обе разновидности двигаться к выходу по одной и той же траектории от нижнего полупрозрачного зеркала

Один фотон входит в интерферометр сверху слева, как показано на рисунке 9.3. Во всех вселенных, где проводят эксперимент, фотон и его двойники движутся к интерферометру по одной и той же траектории. Следовательно, эти вселенные идентичны. Но как только фотон уда­ряется о полупрозрачное зеркало, первоначально идентичные вселен­ные становятся различными. В половине из них фотон проходит через это зеркало и перемещается вдоль верхней стороны интерферометра. В остальных вселенных фотон отскакивает от зеркала и перемещает­ся вдоль левой стороны интерферометра. Затем разновидности фотона в этих группах вселенных ударяются об обычные зеркала справа сверху и слева снизу соответственно и отскакивают от них. Таким образом, в конце они одновременно попадают на полупрозрачное зеркало справа снизу и интерферируют друг с другом. Не забывайте, что мы пускали в аппарат только один фотон, и в каждой вселенной по-прежнему нахо­дится только один фотон. Во всех вселенных этот фотон теперь ударил­ся о правое нижнее зеркало. В половине вселенных он ударился об это зеркало слева, в другой половине — сверху. Между разновидностями  {209}  фотона из этих двух групп вселенных произошла сильная интерференция. Суммарный эффект зависит от точной геометрии ситуации, но на рисунке 9.3 изображен тот случай, когда во всех вселенных фотон в конце движется вправо сквозь зеркало, и ни в одной вселенной он не передается или не отражается вниз. Таким образом, в конце экспери­мента все вселенные так же идентичны, как и в начале. Они отличались и взаимодействовали друг с другом всего лишь долю минуты в проме­жуточном состоянии.

Это замечательное явление неслучайной интерференции — почти такое же неизбежное свидетельство существования мультиверса, как и явление теней. Поскольку результат, описанный мной, несовместим ни с одной из двух возможных траекторий движения частицы в од­ной вселенной. Если мы, например, направим фотон вправо вдоль ниж­ней стороны интерферометра, он, как и фотон из эксперимента, может пройти сквозь полупрозрачное зеркало. Но может и не пройти — иног­да он отклоняется вниз. Точно так же фотон, направленный вниз, вдоль правой стороны интерферометра, может отклониться вправо, как в экс­перименте с интерференцией, или просто двигаться прямо вниз. Таким образом, на какую бы траекторию вы ни направили один фотон внутри аппарата, он будет появляться случайно. Результат можно предсказать только в том случае, когда между двумя траекториями произойдет интерференция. Следовательно, непосредственно перед окончанием экспе­римента с интерференцией в аппарате присутствует нечто, что не мо­жет быть одним фотоном с одной траекторией: например, это не может выть просто фотон, который перемещается вдоль нижней стороны ин­терферометра. Там должно быть что-то ещё, что мешает ему отскочить вниз. Там не может быть и просто фотон, который перемещается вдоль правой стороны интерферометра; там, опять, должно быть что-то ещё, что мешает ему переместиться прямо вниз, как это могло бы произойти в некоторых случаях, если бы он был там один. Как и в случае с тенями, мы можем придумать дальнейшие эксперименты, чтобы показать, что это «что-то еще» обладает всеми свойствами фотона, который пере­мещается вдоль другой траектории и интерферирует с видимым нами фотоном, но ни с чем другим в нашей вселенной.

Поскольку в этом опыте присутствуют только два различных вида вселенных, вычисление того, что произойдет, займет только всего в два раза больше времени, чем заняло бы, если бы частица подчиня­лась классическим законам — скажем, если бы мы вычисляли траекторию  {210}  движения бильярдного шара. Вряд ли коэффициент два сделает такие вычисления трудно обрабатываемыми. Однако, мы уже видели, что довольно легко достичь и гораздо более высокой степени многообра­зия. В экспериментах с тенями один фотон проходит через перегородку с несколькими маленькими отверстиями и попадает на экран. Пред­положим, что в перегородке тысяча отверстий. На экране есть места, куда может попасть фотон (и попадает в некоторых вселенных), и мес­та, куда он попасть не может. Чтобы вычислить, может ли конкретная точка экрана принять фотон, мы должны вычислить эффекты взаим­ной интерференции разновидностей фотона из тысячи параллельных вселенных. В частности, мы должны вычислить тысячу траекторий движения фотона от перегородки до данной точки экрана, затем вы­числить влияния этих фотонов друг на друга так, чтобы определить, всем ли им мешают достигнуть этой точки. Таким образом, мы долж­ны выполнить примерно в тысячу раз больше вычислений, чем нам пришлось бы, если бы мы определяли, попадет ли в конкретную точку классическая частица.

Сложность такого рода вычислений показывает нам, что в квантово-механической среде происходит гораздо больше, чем (буквально) ви­дит глаз. Я доказал, выражая критерий реальности доктора Джон­сона на языке вычислительной сложности, что эта сложность — ос­новная причина того, почему бессмысленно отрицать существование оставшейся части мультиверса. Но возможны гораздо более высо­кие степени многообразия, когда в интерференцию вовлекаются две или более взаимодействующих частицы. Допустим, что для каждой из двух взаимодействующих частиц открыта (скажем) тысяча тра­екторий. Тогда эта пара на промежуточном этапе эксперимента мо­жет оказаться в миллионе различных состояний, так что может быть до миллиона вселенных, которые будут отличаться тем, что делает эта пара частиц. Если бы взаимодействовали три частицы, то ко­личество различных вселенных могло бы увеличиться до миллиар­да; для четырех частиц — до триллиона и т. д. Таким образом, ко­личество различных историй, которые нам пришлось бы вычислить, если бы мы захотели предсказать то, что произойдет в таких слу­чаях, увеличивается экспоненциально с ростом числа взаимодейству­ющих частиц. Именно поэтому задача вычисления поведения типичной квантовой системы труднообрабатываема в полном смысле этого слова.  {211} 

Это именно та трудность обработки, которая волновала Фейнмана. Мы видим, что она не имеет ничего общего с непредсказуемостью: напротив, наиболее ясно она проявляется в квантовых явлениях с вы­сокой степенью предсказуемости. Так происходит потому, что в та­ких явлениях один и тот же определенный результат имеет место во всех вселенных, однако этот результат — итог интерференции между огромным количеством вселенных, которые отличались друг от дру­га во время эксперимента. Все это в принципе можно предсказать из квантовой теории, да оно и не страдает излишней чувствительностью к начальным условиям. Но предсказать, что в таких экспериментах результат всегда будет одним и тем же, трудно потому, что для этого необходимо выполнить чрезмерно большой объем вычислений.

Трудность обработки, в принципе, является гораздо бóльшим пре­пятствием для универсальности, чем им когда-либо могла стать не­предсказуемость. Я уже сказал, что абсолютно точная передача рулет­ки не нуждается (а на самом деле, и не должна нуждаться) в после­довательности чисел, совпадающей с реальной. Подобным образом, мы не можем заранее подготовить передачу завтрашней погоды в вирту­альной реальности. Но мы можем (или однажды сможем) осуществить передачу погоды, которая хотя и не будет такой же, как реальная по­года, имевшая место в какой-то исторический день, но тем не менее, будет вести себя столь реалистично, что ни один пользователь, каким бы экспертом он ни был, не сможет отличить её от настоящей погоды. То же самое касается и любой среды, которая не показывает эффекты квантовой интерференции (что означает большинство сред). Передача такой среды в виртуальной реальности — легкообрабатываемая вычислительная задача. Однако оказалось, что невозможно практически пе­редать те среды, которые показывают эффекты квантовой интерферен­ции. Не выполняя экспоненциально большие объемы вычислений, как мы можем быть уверены, что в этих случаях переданная нами среда никогда не сделает того, что из-за некоторого явления интерференции никогда не делает реальная среда?

Может показаться естественным вывод, что реальность всё-таки не показывает настоящей универсальности вычислений, поскольку не­возможно полезно передать явления интерференции. Однако, Фейнман сделал противоположный вывод и был совершенно прав! Вместо того, чтобы считать трудность обработки задачи передачи квантовых яв­лений препятствием, Фейнман счел её благоприятной возможностью.  {212}  Если, чтобы узнать исход эксперимента с интерференцией, необходи­мо выполнить так много вычислений, то сам факт проведения тако­го эксперимента и измерения его результатов равносилен выполнению сложного вычисления. Таким образом, рассуждал Фейнман, наверное всё-таки можно было бы эффективно передать квантовые среды при условии, что компьютеру позволят проводить эксперименты над реаль­ным квантово-механическим объектом. Компьютер выбрал бы, какие измерения сделать на вспомогательной составляющей квантового ап­паратного обеспечения во время проведения эксперимента, и включил бы результаты измерений в свои вычисления.

В действительности вспомогательное квантовое аппаратное обес­печение тоже было бы компьютером. Например, интерферометр мог бы действовать, как подобный прибор, и, как любой другой физичес­кий объект, его можно было бы считать компьютером. Сегодня мы на­звали бы его специализированным квантовым компьютером. Мы «про­граммируем» его, устанавливая зеркала так, чтобы создать определен­ную геометрию, и затем направляем один фотон на первое зеркало. В эксперименте с неслучайной интерференцией фотон всегда будет по­являться в одном конкретном направлении, определяемом установкой зеркал, и мы можем интерпретировать это направление как указываю­щее результат вычисления. В более сложном эксперименте с нескольки­ми взаимодействующими частицами такое вычисление запросто могло бы, как я уже объяснил, стать «труднообрабатываемым». Но посколь­ку мы смогли получить его результаты, просто проведя эксперимент, значит, его всё-таки нельзя назвать действительно труднообрабатыва­емым. Нам теперь следует быть более осторожными в вопросах тер­минологии. Очевидно, что существуют вычислительные задачи, кото­рые «с трудом поддаются обработке», если мы пытаемся решить их с помощью любого существующего компьютера, но которые перешли бы в разряд легко обрабатываемых, если бы в качестве специализиро­ванных компьютеров мы использовали квантово-механические объек­ты. (Обратите внимание, что возможность использования квантовых явлений для выполнения вычислений с помощью такого метода обу­словлена тем, что эти явления не подвержены хаосу. Если бы резуль­тат вычислений был функцией, чрезмерно чувствительной к начально­му состоянию, «запрограммировать» такое устройство, установив его в подходящее начальное состояние, было бы непосильно сложной зада­чей).  {213} 

Использование вспомогательного квантового устройства таким об­разом можно было бы посчитать надувательством, так как очевидно, что любую среду гораздо проще передать, имея доступ к её запасной копии для проведения измерений во время передачи! Однако Фейнман выдвинул гипотезу, что нет необходимости в использовании точной ко­пии передаваемой среды: что можно найти вспомогательное устройство с гораздо более простой конструкцией, но интерференционные свойства которого, тем не менее, будут аналогичны свойствам передаваемой сре­ды. Оставшуюся часть передачи способен осуществить обычный ком­пьютер, работающий аналогичным образом между вспомогательным устройством и передаваемой средой. Фейнман ожидал, что эта зада­ча будет легкообрабатываемой. Более того, он предполагал, как ока­залось, правильно, что все квантово-механические свойства любой пе­редаваемой среды можно смоделировать с помощью вспомогательных устройств конкретного вида, который он точно определил (а именно, совокупности вращающихся атомов, каждый из которых взаимодейст­вует со своими соседями). Он назвал весь класс таких устройств уни­версальным квантовым имитатором.

Однако этот имитатор не был отдельной машиной, какой он должен был бы быть, чтобы называться универсальным компьютером. Взаимодействия, которым пришлось бы подвергнуться атомам имитатора, нельзя было установить однажды и навсегда, как в универсальном ком­пьютере, их нужно было переустанавливать для каждой передаваемой среды. Однако смысл универсальности в том, что должно быть возмож­ным запрограммировать отдельную машину, точно определенную раз и навсегда, для выполнения любого возможного вычисления или пере­дачи любой возможной среды. В 1985 году я доказал, что в квантовой физике существует универсальный квантовый компьютер. Это доказа­тельство было абсолютно прямым. Все, что мне пришлось сделать, это скопировать устройства Тьюринга, но для определения лежащей в их основе физики воспользоваться не классической механикой, которую неявно принимал Тьюринг, а квантовой теорией. Универсальный кван­товый компьютер может выполнить любое вычисление, которое может выполнить любой другой квантовый компьютер (или любой компьютер типа машины Тьюринга), а также он может передать любую конечную физически возможную среду в виртуальной реальности. Более того, с тех пор было показано, что время и остальные ресурсы, которые ему понадобятся для осуществления всего этого, не будут увеличиваться  {214}  экспоненциально с ростом размеров или числа деталей передаваемой среды, так что важные вычисления будут легкообрабатываемы в соот­ветствии с нормами теории сложности.

Классическая теория вычисления, которая в течение полувека оставалась неоспоримым основанием вычисления, сейчас устарела, пре­вратившись разве что, как и остальная классическая физика, в схему аппроксимации. Сейчас такой теорией вычисления является квантовая теория вычисления. Я сказал, что Тьюринг в своем устройстве неявно использовал «классическую механику». Но, оценив прошедшие события, сейчас мы можем увидеть, что даже классическая теория вычисления не полностью соответствовала классической физике и содержала серь­езные предзнаменования квантовой теории. Совсем не совпадение, что слово бит, означающее наименьшее возможное количество информа­ции, которым способен управлять компьютер, в сущности значит то же самое, что и квант, дискретный компонент. Дискретные перемен­ные (переменные, которые не могут принимать непрерывный диапа­зон значений) чужды классической физике. Например, если переменная имеет только два возможных значения, скажем, 0 и 1, как она вообще попадает из 0 в 1? (Я задавал этот вопрос в главе 2). В классической физике ей пришлось бы переместиться из одного значения в другое с пе­рерывом, что несовместимо с работой сил и движений в классической механике. В квантовой физике нет необходимости в прерывном измене­нии — даже несмотря на то, что все измеримые величины дискретны. Это происходит следующим образом.

Для начала давайте представим несколько параллельных вселен­ных, сложенных подобно колоде карт, причем вся колода представля­ет собой совокупность вселенных. (Такая модель, в которой вселен­ные располагаются последовательно, весьма преуменьшает сложность мультиверса, но она вполне достаточна, чтобы проиллюстрировать то, о чем я говорю). Теперь давайте изменим эту модель, чтобы учесть тот факт, что мультиверс — это не дискретный набор вселенных, а конти­нуум, и то, что не все вселенные различны. В действительности, для каждой вселенной, которая там присутствует, также существует конти­нуум идентичных вселенных, содержащий определенную крошечную, но отличную от нуля долю мультиверса. В нашей модели эту долю можно представить через толщину карты, причем каждая карта те­перь представляет все вселенные данного типа. Однако, в отличие от толщины карты, доля каждого типа вселенных изменяется со време­нем  {215}  по квантово-механическим законам движения. Следовательно, доля вселенных, обладающих данным свойством, тоже изменяется, и изменя­ется непрерывно. В случае с дискретной переменной, которая изменя­ется от 0 до 1, допустим, что эта переменная принимает значение 0 во всех вселенных до начала изменения, а после изменения она принима­ет значение 1 во всех вселенных. Во время изменения доля вселенных, в которых значение равно 0, равномерно уменьшается от 100% до нуля, а доля вселенных, в которых это значение равно 1, соответственно рас­тет от нуля до 100%. На рисунке 9.4 показана точка зрения мультиверса на подобное изменение.

Рис. 9.4. Перспектива мультиверса на непрерывное изменение бита от 0 до 1

Из рисунка 9.4 может показаться, что хотя переход от 0 к 1 объек­тивно непрерывен с перспективы мультиверса, он остается субъектив­но прерывным с перспективы любой отдельной вселенной — представ­ленной, скажем, горизонтальной линией, доходящей до середины рисун­ка 9.4. Однако это всего лишь ограничение диаграммы, а не реальная характеристика того, что происходит на самом деле. Хотя диаграмма выглядит так, словно в каждое мгновение существует конкретная все­ленная, которая «только что изменилась» от 0 до 1, потому что она только что «пересекла границу», на самом деле это не так. Так быть не может, потому что такая вселенная строго идентична любой другой вселенной, в которой бит в данный момент имеет значение 1. Поэто­му, если бы жители одной из них испытывали прерывное изменение, то жители всех других испытывали бы то же самое. Значит, ни одна из них не может иметь такой опыт. Обратите также внимание, что, как я объясню в главе 11, идея о чем-то, что движется через диаграм­му, подобную рисунку 9.4, на которой уже представлено время, просто  {216}  ошибочна. В каждое мгновение бит имеет значение 1 в определенной доле вселенных и 0 — в другой. Все эти вселенные в каждый момент времени уже показаны на рисунке 9.4. Они никуда не движутся!

Еще один показатель неявного присутствия квантовой физики в классическом вычислении — это зависимость всех вариантов прак­тической реализации компьютеров типа машины Тьюринга от таких вещей как твердая материя или намагниченные материалы, которые не могли бы существовать в отсутствие квантово-механических эффек­тов. Например, любое твердое тело состоит из совокупности атомов, состоящих из электрически заряженных частиц (электроны и прото­ны в ядре). Но из-за классического хаоса ни одна совокупность заря­женных частиц не могла бы оставаться устойчивой при классических законах движения. Положительно и отрицательно заряженные части­цы просто вылетали бы со своего места, сталкиваясь друг с другом, и конструкция распалась бы. Только сильная квантовая интерферен­ция между различными траекториями движения заряженных частиц в параллельных вселенных предотвращает такие катастрофы и делает возможным существование твердой материи.

Создание универсального квантового компьютера действительно выходит за рамки современной технологии. Как я уже сказал, что­бы обнаружить явление интерференции, нужно вызвать соответству­ющее взаимодействие всех переменных, которые были отличными во вселенных, вступивших в интерференцию. Чем больше взаимодейст­вующих частиц, тем сложнее спровоцировать взаимодействие, кото­рое продемонстрировало бы интерференцию, то есть результат вычис­ления. Среди множества технических сложностей работы на уровне одного атома или электрона одна из важнейших состоит в огражде­нии среды от воздействия различных интерферирующих субвычисле­ний. Поскольку, когда группа атомов подвергается явлению интерфе­ренции, причем эти атомы дифференцированно воздействуют на дру­гие атомы этой среды, то интерференцию уже невозможно обнару­жить с помощью измерений только исходной группы, и эта группа уже не выполняет какое бы то ни было полезное квантовое вычис­ление. Это называется декогерентностью. Следует добавить, что эту проблему часто представляют в ложном свете: нам говорят, что «кван­товая интерференция — очень чувствительный процесс, и его следует ограждать от любых внешних воздействий». Но это не так. Внешние воздействия способны вызвать малейшие несовершенства, но именно  {217}  эффект квантового вычисления внешнего мира вызывает декогерентность.

Таким образом, ставка делается на создание субмикроскопических систем, в которых переменные, несущие информацию, взаимодейству­ют друг с другом, но оказывают на свою среду возможно меньшее вли­яние. Другое новое упрощение, уникальное для квантовой теории вы­числения, частично компенсирует сложности, вызываемые декогерент­ностью. Оказывается, что в отличие от классического вычисления, где необходимо разрабатывать точно определенные классические логичес­кие элементы, как-то И, или и НЕ, при квантовом вычислении точная форма взаимодействий вряд ли имеет значение. В сущности, любую систему взаимодействующих битов атомного масштаба, если она не декогерирует, можно приспособить для выполнения полезных квантовых вычислений.

Известны интерференционные явления, включающие огромные ко­личества частиц, например, суперпроводимость или супертекучесть, но кажется, что ни одно из них невозможно использовать для выпол­нения хоть сколь-нибудь интересных вычислений. Во время написания книги в лаборатории можно было без труда выполнить только одно­битовые квантовые вычисления. Однако, экспериментаторы уверены, что в течение нескольких последующих лет будут созданы двух- и бо­лее битовые квантовые логические элементы (квантовые эквивален­ты классических логических элементов). Это основные составляющие квантовых компьютеров. Некоторые физики, особенно Рольф Ландауер из Исследовательского Центра IBM, настроены пессимистично отно­сительно перспектив будущих достижений. Они полагают, что декогерентность никогда не будет сведена до того уровня, где можно будет выполнить больше, чем несколько последовательных этапов квантового вычисления. Большинство исследователей из этой области настроены гораздо более оптимистично (хотя возможно, это связано с тем, что над квантовым вычислением решаются работать только очень большие оп­тимисты!). Уже были построены некоторые специализированные кван­товые компьютеры (смотри ниже), и лично я думаю, что появление более сложных квантовых компьютеров — скорее дело нескольких лет, чем десятилетий. Что касается универсального квантового компьюте­ра, то я считаю, что его создание — это тоже только дело времени, хотя мне не хотелось бы предсказывать, сколько времени на это уйдет: десятилетия или века.  {218} 

Тот факт, что репертуар универсального квантового компьюте­ра содержит среды, передача которых является труднообрабатываемой для классического вычисления, говорит о том, что новые классы чис­то математических вычислений тоже должны стать легкообрабатыва­емыми на этом компьютере. Как сказал Галилео, законы физики выра­жаются на языке математики, а передача среды эквивалентна оценке определенных математических функций. Действительно, в настоящее время обнаружено множество математических задач, которые можно было бы эффективно решить с помощью квантового вычисления, так как для всех известных классических методов они являются трудно­обрабатываемыми. Наиболее эффектной из этих задач является задача разложения на множители больших чисел. В 1994 году Питер Шор, ра­ботающий в Bell Laboratories, открыл метод, известный как алгоритм Шора. (Пока эта книга корректировалась, были открыты другие эф­фектные квантовые алгоритмы, включая алгоритм Гровера для очень быстрого поиска длинных списков).

Алгоритм Шора чрезвычайно прост и довольствуется гораздо более скромным аппаратным обеспечением, чем то, которое понадобилось бы для универсального квантового компьютера. А потому вероятно, что квантовое устройство для разложения на множители будет построено задолго до того, как весь диапазон квантовых вычислений станет техно­логически осуществимым. Эта перспектива имеет грандиозное значе­ние для криптографии (науки, которая занимается секретной передачей информации и установлением её подлинности). Реальные сети связи могут быть глобальными и иметь огромные, постоянно изменяющиеся наборы участников с непредсказуемыми схемами связи. Непрактич­но требовать, чтобы каждая пара участников заранее физически об­менивалась секретными шифровальными ключами, которые позволили бы им позднее общаться, не боясь, что их подслушают. Криптография с открытым ключом — это любой метод отправки секретной информа­ции, при котором ни отправитель, ни получатель не делятся секретной информацией. Самый надежный из известных методов криптографии с открытым ключом основан на трудности обработки задачи разложе­ния на множители больших чисел. Этот метод известен как криптосис­тема RSA, которая получила свое название в честь Рональда Ривеста (Rivest), Ади Шамира (Shamir) и Леонарда Адельмана (Adelman), кото­рые впервые предложили её в 1978 году. Этот метод обусловлен мате­матической процедурой, посредством которой сообщение можно зако­дировать,  {219}  используя в качестве ключа огромное (скажем, 250-значное) число. Получатель может свободно обнародовать этот ключ, потому что любое сообщение, зашифрованное с его помощью, можно расшиф­ровать, только зная множители этого числа. Таким образом, я могу выбрать два 125-значных простых числа и хранить их в секрете, но перемножив, сообщить всем их 250-значное произведение. Кто угодно может послать мне сообщение, использовав это число как код, но толь­ко я смогу прочитать эти сообщения, потому что только мне известны секретные множители.

Как я уже сказал, не существует практической возможности раз­ложения на множители 250-значного числа с использованием класси­ческих средств. Но квантовое устройство разложения на множители, работающее по алгоритму Шора, могло бы это сделать, выполнив все­го несколько тысяч арифметических операций, что, возможно, было бы минутным делом. Таким образом, любой человек, имеющий доступ к такой машине, смог бы легко прочитать любое перехваченное сооб­щение, зашифрованное с помощью криптосистемы RSA.

Шифровальщикам не помогло бы даже использование больших чи­сел в качестве ключей, потому что ресурсы, необходимые для рабо­ты алгоритма Шора, очень медленно увеличиваются с увеличением раскладываемого на множители числа. В квантовой теории вычисле­ния разложение на множители — очень легко обрабатываемая задача. Считается, что при данном уровне декогерентности снова появится практическое ограничение величины числа, которое можно разложить на множители, но неизвестен нижний предел технологически дости­жимой степени декогерентности. Поэтому, мы должны сделать вы­вод, что однажды в будущем, во время, которое сейчас невозможно предсказать, криптосистема RSA с любой данной длиной ключа может стать несекретной. В определенном смысле это делает её несе­кретной даже сегодня. Любой человек или организация, которые сей­час записывают сообщения, закодированные в системе RSA, и ждут того времени, когда смогут купить квантовое устройство разложения на множители с достаточно низкой декогерентностью, смогут расшиф­ровать эти сообщения. Возможно, это произойдет только через века, возможно всего через несколько десятилетий, а может, и ещё рань­ше — кто знает? Но вероятность, что это произойдет ещё не скоро, — это все, что теперь осталось от бывшей абсолютной секретности систе­мы RSA.  {220} 

Когда квантовое устройство разложения на множители расклады­вает на множители 250-значное число, количество интерферирующих вселенных будет порядка 10500, т. е. десять в степени 500. Это ошелом­ляюще огромное число — причина того, почему алгоритм Шора делает разложение на множители легкообрабатываемым. Я сказал, что этот алгоритм требует выполнения всего нескольких тысяч арифметичес­ких операций. Безусловно, я имел в виду несколько тысяч операций в каждой вселенной, которая вносит вклад в ответ. Все эти вычисления выполняются в различных параллельных вселенных и делятся своими результатами через интерференцию.

Возможно, вам интересно, как мы сможем убедить своих двойни­ков из 10500 вселенных начать работать над нашей задачей разложения на множители. Разве у них нет своих собственных задач, чтобы за­действовать компьютеры? Нам не нужно их убеждать. Алгоритм Шо­ра изначально действует только в наборе вселенных, идентичных друг другу, и вызывает в них отличия только в пределах устройства разло­жения на множители. Поэтому мы, точно определившие число, которое нужно разложить на множители, и ждущие ответа, идентичны во всех интерферирующих вселенных. Несомненно, существует много других вселенных, в которых мы запрограммировали другое число или вообще не построили устройство разложения на множители. Но эти вселенные отличаются от нашей слишком большим количеством переменных — или точнее, переменными, которые программирование алгоритма Шо­ра не привело к нужному взаимодействию, — и потому они не интер­ферируют с нашей вселенной.

Доказательство, приведенное в главе 2, применительно к любо­му явлению интерференции, разрушает классическую идею существо­вания только одной вселенной. Логически возможность комплексных квантовых вычислений ничего не дает в том случае, на который уже нельзя ответить. Но эта возможность оказывает психологическое вли­яние. Алгоритм Шора расширяет это доказательство. Для тех, кто всё ещё склонен считать, что существует только одна вселенная, я предла­гаю следующую задачу: объясните принцип действия алгоритма Шора. Я не имею в виду, предскажите, что он будет работать, поскольку для этого достаточно решить несколько непротиворечивых уравнений. Я прошу вас дать объяснение. Когда алгоритм Шора разложил на мно­жители число, задействовав примерно 10500 вычислительных ресурсов, которые можно увидеть, где это число раскладывалось на множители?  {221}  Во всей видимой вселенной существует всего около 1080 атомов, число ничтожно малое по сравнению с 10500. Таким образом, если бы видимая вселенная была мерой физической реальности, физическая реальность даже отдаленно не содержала бы ресурсов, достаточных для разложе­ния на множители такого большого числа. Кто же тогда разложил его на множители? Как и где выполнялось вычисление?

Я говорил о традиционных типах математических задач, которые квантовые компьютеры смогли бы выполнить быстрее существующих. Но для квантовых компьютеров открыт и дополнительный класс новых задач, которые не способен решить ни один классический компьютер. По странному совпадению, одной из первых таких задач обнаружили задачу, также связанную с криптографией с открытым ключом. На этот раз дело не в разрушении существующей системы, а в реализации новой абсолютно секретной системы квантовой криптографии. В 1989 году в Нью-Йорке, в Исследовательском Центре IBM, в офисе теоретика Чарльза Беннетта был построен первый рабочий квантовый компью­тер. Это был специализированный квантовый компьютер, состоящий из двух квантовых криптографических устройств, спроектированных Беннеттом и Жилем Брассаром из Монреальского Университета. Этот компьютер стал первой машиной, выполнившей небанальные вычисле­ния, которые не смогла бы выполнить ни одна машина Тьюринга.  

В квантовой криптосистеме Беннета и Брассара послания кодиру­ются состояниями отдельных фотонов, испускаемых лазером. Несмот­ря на то, что для передачи сообщения необходимо много фотонов (один фотон на бит, плюс те фотоны, которые тратятся на всевозможные не­эффективности), такие машины можно построить, используя сущест­вующую технологию, потому что для выполнения своих квантовых вычислений им необходим один фотон на раз. Секретность системы основана не на трудности обработки, как классической, так и квантовой, а непосредственно на свойствах квантовой интерференции: именно она дает этой системе абсолютную секретность, которую невозможно обеспечить с помощью классических методов. Никакой объем будущих вычислений ни на каком компьютере через миллионы или триллионы лет не поможет тому, кто хотел бы подслушать послания, закодиро­ванные квантовым методом: поскольку, если кто-либо общается через среду, демонстрирующую интерференцию, то он сможет обнаружить подслушивающих его людей. В соответствии с классической физикой нет ничего, что может помешать подслушивающему, который  {222}  имеет физический доступ к среде связи, например, к телефонной линии, пу­тем установки пассивного подслушивающего устройства. Но как я уже объяснил, если кто-либо осуществляет какое-либо измерение кванто­вой системы, он изменяет её последующие интерференционные свойст­ва. От этого эффекта зависит протокол связи. Связывающиеся стороны эффективно ставят повторяющиеся эксперименты по интерференции, согласуя их через общественный канал связи. Только когда интерфе­ренция пройдет проверку на отсутствие подслушивающих, они перехо­дят к следующей стадии протокола, состоящей в том, чтобы использо­вать некоторую часть переданной информации в качестве криптогра­фического ключа. В худшем случае упорный подслушивающий может помешать связи состояться (хотя, безусловно, этого проще достичь, пе­ререзав телефонную линию). Но что касается чтения сообщения, это может сделать только получатель, для которого оно предназначено, это гарантируют законы физики.

Поскольку квантовая криптография зависит от манипулирования отдельными фотонами, она страдает от значительного ограничения. Каждый фотон, переносящий один бит информации и получаемый по­следовательно, должен быть каким-то образом передан невредимым от отправителя получателю. Но любой метод передачи содержит потери, и если они слишком большие, послание никогда не достигнет своего адресата. Установка ретрансляционных станций (мера для устранения этой проблемы в существующих системах связи) подвергла бы рис­ку секретность, потому что подслушивающий мог бы наблюдать за тем, что происходит внутри ретрансляционной станции, не будучи об­наруженным. Лучшие из существующих квантово-криптографических систем используют волокнооптические кабели и имеют диапазон око­ло десяти километров. Этого было бы достаточно, чтобы обеспечить, скажем, экономический район города абсолютно секретной внутренней связью. Возможно, не далеки и рыночные системы, но чтобы решить задачу криптографии с открытым ключом в общем случае — скажем, для глобальной связи — необходимо дальнейшее развитие квантовой криптографии.

Экспериментальные и теоретические исследования в области кван­тового вычисления набирают темп во всем мире. Предлагают даже бо­лее обещающие новые технологии реализации квантовых компьютеров и постоянно открывают и анализируют новые типы квантового вы­числения с различными преимуществами перед классическим вычис­лением.  {223}  Я нахожу все эти разработки весьма захватывающими и счи­таю, что некоторые из них принесут технологические плоды. Но для этой книги данный вопрос несущественен. С фундаментальной точки зрения не имеет значения, насколько полезным оказывается кванто­вое вычисление, как не имеет значения и то, построим ли мы первый универсальный квантовый компьютер на следующей неделе, через ве­ка или не построим его никогда. В любом случае, квантовая теория вычисления должна быть неотъемлемой частью мировоззрения любого человека, ищущего фундаментального понимания реальности. То, что квантовые компьютеры говорят нам о связи законов физики, универ­сальности и, на первый взгляд, несвязанных направлений объяснения в структуре реальности, мы можем обнаружить — и уже обнаружива­ем, — изучая их теоретически.

ТЕРМИНОЛОГИЯ

Квантовое вычисление — вычисление, которое требует квантово-механических процессов, особенно интерференции. Другими словами, вычисление, которое осуществляют в сотрудничестве с параллельными вселенными.

Экспоненциальное вычисление — вычисление, требования к ресурсам которого (например, необходимому времени) увеличива­ются примерно с постоянным множителем при увеличении вводимого числа на каждый последующий разряд.

Легко/труднообрабатываемый (Правило быстрых приближен­ных расчетов) — вычислительная задача считается легкообрабатывае­мой, если ресурсы, необходимые для её выполнения, не увеличиваются экспоненциально с ростом количества разрядов вводимого числа.

Хаос — неустойчивость движения большинства классических сис­тем. Небольшая разница между двумя начальными состояниями по­рождает экспоненциально растущие отклонения двух результирующих траекторий. Однако реальность подчиняется не классической, а кванто­вой физике. Непредсказуемость, вызванная хаосом, в общем случае пе­рекрывается квантовой неопределенностью, вызванной тем, что иден­тичные вселенные становятся различными.

Универсальный квантовый компьютер — компьютер, способ­ный выполнить любое вычисление, которое способен выполнить любой  {224}  другой квантовый компьютер, и передать любую конечную физически возможную среду в виртуальной реальности.

Квантовая криптография — любая форма криптографии, кото­рую можно реализовать на квантовых компьютерах, но невозможно на классических.

Специализированный квантовый компьютер — квантовый компьютер, например, квантовое криптографическое устройство или квантовое устройство разложения на множители, который не является универсальным квантовым компьютером.

Декогерентность — когда различные отрасли квантового вычис­ления в различных вселенных по-разному воздействуют на окружаю­щую среду, интерференция уменьшается, а вычисление может не по­лучиться. Декогерентность — это главное препятствие практической реализации более мощных квантовых компьютеров.

РЕЗЮМЕ

Законы физики допускают существование компьютеров, способ­ных передать любую физически возможную среду, не используя не­практично больших ресурсов. Таким образом, универсальное вычис­ление не просто возможно, как этого требовал принцип Тьюринга, оно также является легкообрабатываемым. Квантовые явления могут включать огромное множество параллельных вселенных, а потому, мо­гут не поддаться эффективному моделированию в пределах одной все­ленной. Тем не менее, эта жизнестойкая форма универсальности по-прежнему остается в силе, потому что квантовые компьютеры могут эффективно передать любую физически возможную квантовую среду, даже при взаимодействии огромного множества вселенных. Квантовые компьютеры также могут эффективно решать определенные математи­ческие задачи, например, разложение на множители, которые с класси­ческих позиций являются труднообрабатываемыми, а также осуществ­лять классически невозможные разновидности криптографии. Кванто­вое вычисление — это качественно новый способ использования приро­ды.


Следующая глава, вероятно, приведет в ярость многих математи­ков. С этим ничего не поделаешь. Математика — это не то, чем они её считают.  {225} 

(Читатели, не знакомые с традиционными допущениями относи­тельно определенности математического знания, могут посчитать глав­ный вывод этой главы таковым, что наше знание математической ис­тины зависит от нашего знания физического мира, и не более надежно, чем это знание является очевидным. Возможно, эти читатели предпочтут только просмотреть эту главу и сразу же перейти к обсуждению времени в главе 11).  {226} 




ГЛАВА 10

Природа математики

«Структура реальности», которую я описывал до сих пор, была структурой физической реальности. Тем не менее, я свободно ссылал­ся на такие категории, которых нет нигде в физическом мире, — аб­стракции, такие как числа и бесконечные множества компьютерных программ. Да и сами законы физики нельзя отнести к физическим ка­тегориям в том смысле, в каком к ним относятся камни и планеты. Как я уже сказал, «Книга Природы» Галилео — всего лишь метафора. И кроме того, существует вымысел виртуальной реальности, несущест­вующие среды, законы которых отличаются от реальных физических законов. За пределами этих сред находится то, что я назвал средами «Кантгоуту», которые невозможно передать даже в виртуальной реаль­ности. Я сказал, что существует бесконечно много таких сред для каж­дой среды, которую можно передать. Но что значит сказать, что такие среды «существуют»? Если они не существуют ни в реальности, ни да­же в виртуальной реальности, то где они существуют?

А существуют ли абстрактные нефизические категории вообще? Являются ли они частью структуры реальности? В данной ситуации меня не занимают проблемы простого использования слов. Очевидно, что числа, физические законы и т. д. действительно «существуют» в не­котором смысле и не существуют в другом. Независимо от этого воз­никает следующий вопрос: как мы должны понимать такие категории? Какие из них являются всего лишь удобной формой слов, которые, в ко­нечном счете, ссылаются на обычную физическую реальность? Какие из них всего лишь преходящие особенности нашей культуры? Какие из них произвольны, как правила банальной игры, которые нужно толь­ко посмотреть в приложении? А какие, если такие вообще есть, мож­но объяснить только, если приписать им независимое существование? Все, что относится к последнему виду, должно быть частью структуры реальности, как она определяется в этой книге, потому что это необхо­димо понять, чтобы понять все, что понято.  {227} 

Это говорит о том, что нам снова следует воспользоваться критери­ем доктора Джонсона. Если мы хотим знать, действительно ли сущест­вует данная абстракция, мы должны спросить, «дает ли она ответную реакцию» сложным, автономным образом. Например, математики ха­рактеризуют «натуральные числа» 1, 2, 3,... — прежде всего — точным определением:

1 — это натуральное число.

За каждым натуральным числом следует только одно число, кото­рое также является натуральным.

1 не следует ни за каким натуральным числом.

Подобные определения — это попытки абстрактного выражения интуитивного физического понятия последовательных значений дис­кретной величины. (Точнее, как я объяснил в предыдущей главе, в дей­ствительности это понятие является квантово-механическим). Ариф­метические действия, например, умножение и сложение, а также по­следующие понятия, подобные понятию простого числа, в этом случае определяют, ссылаясь на «натуральные числа». Но создав абстрактные «натуральные числа» через это определение и поняв их через эту ин­туицию, мы обнаруживаем, что осталось гораздо больше того, что мы всё ещё не понимаем о них. Определение простого числа раз и навсегда устанавливает, какие числа являются простыми, а какие не являются. Но понимание того, какие числа являются простыми, — например, про­должается ли последовательность простых чисел бесконечно, как они сгруппированы, насколько и почему они «случайны», — влечет за со­бой новое понимание и изобилие новых объяснений. В действительнос­ти оказывается, что сама теория чисел — это целый мир (этот термин используют часто). Для более полного понимания чисел мы должны определить множество новых классов абстрактных категорий и посту­лировать много новых структур и связей между этими структурами. Мы обнаруживаем, что некоторые подобные структуры связаны с ин­туицией другого рода, которой мы уже обладаем, но которая вопреки этому не имеет ничего общего с числами — например, симметрия, вра­щение, континуум, множества, бесконечность и многое другое. Таким образом, абстрактные математические категории, с которыми, как нам кажется, мы знакомы, тем не менее, могут удивить или разочаровать нас. Они могут неожиданно возникнуть в новых нарядах или масках. Они могут быть необъяснимы, а впоследствии подойти под новое объяснение.  {228}  Таким образом, они являются сложными и автономными, и, сле­довательно, по критерию доктора Джонсона, мы должны сделать вывод об их реальности. Поскольку мы не можем понять их ни как часть себя, ни как часть чего-либо ещё, что мы уже понимаем, но можем понять их как независимые категории, следует сделать вывод, что они являются реальными, независимыми категориями.

Тем не менее, абстрактные категории неосязаемы. Они не дают ответной физической реакции так, как это делает камень, поэтому экс­перимент и наблюдение не могут играть в математике такую же роль, какую они играют в науке. В математике такую роль играет доказа­тельство. Камень доктора Джонсона оказал ответное воздействие тем, что в его ноге появилась отдача. Простые числа оказывают ответное воздействие, когда мы доказываем что-то неожиданное относительно них, особенно, если мы можем пойти дальше и объяснить это. С тра­диционной точки зрения ключевое различие между доказательством и экспериментом состоит в том, что доказательство не ссылается на физический мир. Мы можем осуществить доказательство в своем соб­ственном разуме или внутри генератора виртуальной реальности, ко­торый передает среду с неправильной физикой. Единственное условие заключается в том, что мы следуем правилам математического вывода, а потому должны получить тот же самый ответ, что и кто-либо ещё. И вновь широко распространено мнение, что, не считая возможности появления грубых ошибок, когда мы доказали что-либо, мы абсолютно определенно знаем, что это истина.

Математики весьма гордятся этой абсолютной определенностью, а ученые склонны немного этому завидовать. Дело в том, что в науке невозможно быть определенным относительно какого-либо высказыва­ния. Неважно, насколько хорошо чьи-либо теории объясняют существу­ющие наблюдения, в любой момент кто-то может предоставить новое, необъяснимое наблюдение, которое поставит под сомнение всю сущест­вующую объяснительную структуру. Хуже того, кто-то может достичь лучшего понимания, которое объясняет не только все существующие наблюдения, но и то, почему предыдущие объяснения казались подхо­дящими, но, несмотря на это, были весьма ошибочными. Галилео, на­пример, обнаружил новое объяснение векового наблюдения, что земля под нашими ногами находится в состоянии покоя, объяснение, которое влекло за собой идею о том, что в действительности земля движется. Виртуальная реальность — которая может сделать так, что одна среда  {229}  будет казаться другой — подчеркивает тот факт, что когда наблюдение выступает как высший судья теорий, никогда не может возникнуть хоть какая-то определенность, что существующее объяснение, каким бы очевидным оно ни было, хотя бы отдаленно является истиной. Но когда в качестве судьи выступает доказательство, определенность счи­тается возможной.

Говорят, что правила логики впервые сформулировали, надеясь, что они обеспечат объективный и обоснованный метод разрешения всех споров. Эту надежду невозможно оправдать. Изучение самой ло­гики открыло, что область действия логической дедукции как сред­ства раскрытия истины жестко ограничена. При наличии существу­ющих допущений о мире можно сделать выводы дедуктивно; но эти выводы ничуть не более обоснованны, чем допущения. Единственные высказывания, которые может доказать логика, не прибегая к допу­щениям, — это тавтологии — такие утверждения, как «все плане­ты — это планеты», которые ничего не утверждают. В частности, все реальные научные вопросы находятся за пределами той области, где можно уладить споры с помощью одной логики. Однако счита­ется, что математика находится в пределах этой области. Таким об­разом, математики ищут абсолютную, но абстрактную истину, в то время как ученые утешают себя мыслью, что они могут обрести ре­альное и полезное знание физического мира. Но они должны при­нять, что это знание не имеет гарантий. Оно вечно экспериментально и вечно подвержено ошибкам. Идея о том, что науку характеризу­ет «индукция», метод доказательства, который считается аналогом дедукции, но чуть более подверженным ошибкам, — это попытка извлечь все возможное из этого постижимого второсортного стату­са научного знания. Вместо дедуктивно доказанных определенностей, возможно, мы удовольствуемся индуктивно доказанными «почти-определенностями».

Как я уже сказал, не существует такого метода доказательст­ва как «индукция». Идея доказательства каким-то образом достигну­той «почти-определенности» в науке — миф. Каким образом я мог бы «почти-определенно» доказать, что завтра не опубликуют удивитель­ную новую физическую теорию, опровергающую мои самые неоспори­мые допущения относительно реальности? Или то, что я не нахожусь внутри генератора виртуальной реальности? Но я говорю все это не для того, чтобы показать, что научное знание действительно «второсортно».  {230}  Ибо идея о том, что математика дает определенности — это тоже миф.

С древних времен идея о привилегированном статусе математи­ческого знания часто ассоциировалась с идеей о том, что некоторые абстрактные категории, по крайней мере, не просто являются частью структуры реальности, но даже более реальны, чем физический мир. Пифагор считал, что регулярности в природе есть выражение матема­тических отношений между натуральными числами. «Все вещи есть числа» — таков был его девиз. Он не имел это в виду буквально, одна­ко Платон пошел ещё дальше и отрицал реальность физического мира вообще. Он считал, что наши мнимые ощущения этого мира ничего не стоят и вводят в заблуждение, и доказывал, что физические объекты и явления, которые мы понимаем, — всего лишь «тени» несовершен­ных копий их истинных сущностей («Форм» или «Идей»), существую­щих в отдельной области, которая и есть истинная реальность. В этой области, кроме всего прочего, существуют Формы чистых чисел, таких, как 1, 2, 3,..., и Формы математических действий, таких, как сложе­ние и умножение. Мы можем воспринять некоторые тени этих Форм, когда кладем на стол одно яблоко, потом ещё одно и видим, что на столе два яблока. Однако яблоки выражают «наличие одного» и «наличие двух» (и, в данном случае, «наличие яблок») несовершенно. Они не являются совершенно идентичными, а потому, в действительности на столе ни­когда нет двух примеров чего-либо. На это можно возразить, что число два можно также представить, положив на стол два различных объекта. Но и такое представление несовершенно, потому что в этом случае мы должны допустить, что на столе также есть клетки, отпавшие от яблок, пыль и воздух. В отличие от Пифагора, Платон занимался не только на­туральными числами. Его реальность содержала Формы всех понятий. Например, она содержала Форму совершенного круга. «Круги», которые мы видим, никогда не являются действительно кругами. Они не совер­шенно круглые, не совершенно плоские; у них есть конечная толщина и т. д. Все они несовершенны.

Затем Платон указал задачу. Принимая во внимание все это Зем­ное несовершенство (и он мог бы добавить, наш несовершенный сен­сорный доступ даже к Земным кругам), как вообще мы можем знать то, что мы знаем о реальных, совершенных кругах? Очевидно, что мы обладаем знанием о них, но каким образом? Где Евклид приобрел зна­ние геометрии, которое выразил в своих знаменитых аксиомах, когда  {231}  у него не было ни истинных кругов, ни точек, ни прямых? Откуда ис­ходит эта определенность математического доказательства, если никто не способен ощутить те абстрактные категории, на которые оно ссы­лается? Ответ Платона заключался в том, что мы получаем все это знание не из этого мира теней и иллюзий. Мы получаем его непосред­ственно из самого мира Форм. Мы обладаем совершенным врожденным знанием того мира, которое, как он считал, забывается при рождении, а затем скрывается под слоями ошибок, вызванных тем, что мы доверяем своим чувствам. Но реальность можно вспомнить, усердно применяя «разум», впоследствии дающий абсолютную определенность, которую никогда не может дать ощущение.

Интересно, кто-нибудь когда-нибудь верил в эту весьма сомни­тельную фантазию (включая самого Платона, который всё-таки был очень компетентным философом, считавшим, что публике стоит гово­рить благородную ложь)? Тем не менее, поставленная им задача — как мы можем обладать знанием, не говоря уж об определенности, абстрактных категорий — достаточно реальна, а некоторые элемен­ты предложенного им решения с тех пор стали частью общепринятой теории познания. В частности, фактически все математики до сегод­няшнего дня без критики принимают основную идею того, что мате­матическое и научное знание проистекают из различных источников и что «особый» источник математического знания дает ему абсолют­ную определенность. Сейчас этот источник математики называют ма­тематической интуицией, однако он играет ту же самую роль, что и «воспоминания» Платона об области Форм.

Математики много и мучительно спорили о том, открытия каких в точности видов совершенно надежного знания можно ожидать от на­шей математической интуиции. Другими словами, они согласны, что математическая интуиция — источник абсолютной определенности, но не могут прийти к соглашению относительно того, что она им говорит! Очевидно, что это повод для бесконечных, неразрешимых споров.

Бóльшая часть таких споров неизбежно касалась обоснованности или необоснованности различных методов доказательства. Одно из раз­ногласий было связано с так называемыми «мнимыми» числами. Новые теоремы об обычных, «вещественных» числах доказывали, обращаясь на промежуточных этапах доказательства к свойствам мнимых чисел. Например, таким образом были доказаны первые теоремы о распределе­нии простых чисел. Однако некоторые математики возражали против  {232}  мнимых чисел на том основании, что они не реальны. (Современная терминология всё ещё отражает это старое разногласие даже сейчас, когда мы считаем, что мнимые числа так же реальны, как и «вещест­венные»). Я полагаю, что учителя в школе говорили этим математикам, что нельзя извлекать квадратный корень из минус одного, и, поэтому они не понимали, почему кто-либо другой может это сделать. Нет со­мнения в том, что они называли этот злостный порыв «математической интуицией». Однако другие математики обладали другой интуицией. Они понимали, что такое мнимые числа, и как они согласуются с ве­щественными. Почему, думали они, человеку не следует определять новые абстрактные категории, имеющие свойства, которые он предпо­читает? Безусловно единственным законным основанием запретить это была бы логическая несовместимость требуемых свойств. (Это, по су­ществу, современное мнение, выработанное всеобщими усилиями, ма­тематик Джон Хортон Конуэй грубо назвал «Движением Освобождения «Математиков»). Однако общеизвестно, что никто не доказал и то, что обычная арифметика натуральных чисел является самосогласованной.

Подобным разногласиям подверглась и обоснованность использо­вания бесконечных чисел, а также множеств, содержащих бесконечно много элементов, и бесконечно малых величин, используемых при ис­числении. Дэвид Гильберт, великий немецкий математик, предоставив­ший большую часть инфраструктуры как общей теории относительнос­ти, так и квантовой теории, заметил, что «математическая литература переполнена бессмыслицами и нелепостями, проистекающими из бес­конечности». Некоторые математики, как мы увидим, вовсе отрицали обоснованность рассуждения о бесконечных категориях. Легкий доступ к чистой математике в девятнадцатом веке мало что сделал для разре­шения этих разногласий. Напротив, он только усугубил их и породил новые. По мере своего усложнения математическое рассуждение неиз­бежно удалялось от повседневной интуиции, что возымело два важных противоположных следствия. Во-первых, математики стали более пе­дантичными в отношении доказательств, которые, прежде чем быть принятыми, подвергались все более суровым проверкам на соответ­ствие нормам точности. Но во-вторых, изобрели более мощные методы доказательства, которые не всегда можно было обосновать с помощью существующих методов. И из-за этого часто возникали сомнения, был ли какой-то частный метод доказательства, несмотря на свою самооче­видность, абсолютно безошибочным.  {233} 

Таким образом, к 1900 году наступил кризис основ математики, который заключался в том, что этих основ не было. Но что же про­изошло с законами чистой логики? Их перестали считать способными разрешить все математические споры? Удивителен тот факт, что те­перь математические споры в сущности и велись о «законах чистой логики». Первым эти законы привел в систему Аристотель ещё в 4 веке до н.э., тем самым заложив то, что сегодня называют теорией доказа­тельства. Он допустил, что доказательство должно состоять из после­довательности утверждений, которая начинается с каких-либо посылок и определений, а заканчивается желаемым выводом. Чтобы последова­тельность утверждений была обоснованным доказательством, каждое утверждение, кроме начальных посылок, должно следовать из преды­дущих в соответствии с одним из постоянного набора законов, называ­емых силлогизмами. Типичным был следующий силлогизм

Все люди смертны.

Сократ — человек.

[Следовательно] Сократ смертен.

Другими словами, это правило гласило, что если в доказательстве появляется утверждение вида «все А имеют свойство В» (как в данном случае «все люди смертны») и другое утверждение вида «индивидуум Х есть А» (как в данном случае «Сократ — человек»), то впоследствии в доказательстве обоснованно появление утверждения «X имеет свой­ство В» («Сократ смертен»), и это утверждение, в частности, является обоснованным выводом. Силлогизмы выражают то, что мы назвали бы правилами вывода, то есть правилами, определяющими этапы, которые допустимы при доказательстве, такими, что истина посылок переходит к выводам. Кроме того, эти правила можно применить, чтобы опреде­лить, обосновано ли данное доказательство.

Аристотель заявил, что все обоснованные доказательства можно выразить в виде силлогизмов. Но он не доказал это! А проблема теории доказательства заключалась в том, что очень небольшое количество со­временных математических доказательств выражались в виде чистой последовательности силлогизмов; более того, большинство из них не­возможно было привести к такому виду. Тем не менее, большинство математиков не могли заставить себя следовать букве закона Аристо­теля, так как некоторые новые доказательства казались так же само­очевидно обоснованными, как и рассуждение Аристотеля. Математики  {234}  перешли на новый этап развития. Новые инструменты, такие, как сим­волическая логика и теория множеств, позволили математикам уста­новить новую связь между математическими структурами. Благодаря этому появились новые самоочевидные истины, независимые от клас­сических правил вывода, и, таким образом, классические правила ока­зались самоочевидно неадекватными. Но какие же из новых методов доказательства были действительно безошибочными? Как нужно было изменить правила вывода, чтобы они обрели законченность, на кото­рую ошибочно претендовал Аристотель? Как можно было вернуть абсо­лютный авторитет старых правил, если математики не могли прийти к соглашению относительно того, что является самоочевидным, а что бессмысленным?

Тем временем математики продолжали строить свои абстрактные небесные зáмки. Для практических целей многие такие строения каза­лись достаточно надежными. Некоторые из них стали необходимы для науки и техники, а большинство образовало красивую и плодотворную структуру. Тем не менее, никто не мог гарантировать, что вся эта структура, или какая-то существенная её часть, не имела в своей осно­ве логического противоречия, которое буквально лишило бы её всякого смысла. В 1902 году Бертран Рассел доказал несостоятельность схе­мы строгого определения теории множеств, которую только что пред­ложил немецкий логик Готлоб Фреге. Это не значило, что эта схема непременно была необоснованной для использования множеств в дока­зательствах. На самом деле совсем немногие математики всерьез счи­тали, что хоть какой-то из обычных способов использования множеств, арифметики или других ключевых разделов математики может быть необоснованным. В результатах Рассела поражало то, что математики верили, что их предмет является par excellence средством получения абсолютной определенности через доказательство математических тео­рем. Сама возможность разногласий относительно обоснованности раз­личных методов доказательства подрывала всю суть (как считалось) предмета.

Поэтому многие математики чувствовали, что подведение под те­орию доказательства, а тем самым и под саму математику, надежной основы было насущным делом, не терпящим отлагательства. Они хотели объединиться после своих опрометчивых выпадов, чтобы раз и навсегда определить, какие виды доказательства являются абсолютно надежны­ми, а какие нет. Все, что оказалось вне зоны надежности, можно было  {235}  бы отбросить, а все, что попадало в эту зону, стало бы единственной основой всей будущей математики.

В этой связи голландский математик Лейтзен Эгберт Ян Брауэр пропагандировал чрезвычайно консервативную стратегию теории дока­зательства, известную как интуиционизм, которая и по сей день имеет своих сторонников. Интуиционисты пытаются толковать «интуицию» самым ограниченным постижимым образом, оставляя лишь то, что они считают её неоспоримыми самоочевидными аспектами. Затем они под­нимают таким образом определенную математическую интуицию на уровень даже более высокий, чем позволял себе Платон: они считают её более веской, чем даже чистая логика. Таким образом, они считают саму логику ненадежной, за исключением тех случаев, когда её до­казывает прямая математическая интуиция. Например, интуиционисты отрицают, что можно иметь прямую интуицию какой-либо беско­нечной категории. Следовательно, они отрицают существование любых бесконечных множеств, например, множества всех натуральных чисел. Высказывание о том, что «существует бесконечно много натуральных чисел», они сочли бы самоочевидно ложным. А высказывание о том, что «существует больше сред Кантгоуту, чем физически возможных сред», — абсолютно бессмысленным.

Исторически интуиционизм, равно как и индуктивизм, сыграл цен­ную освободительную роль. Он осмелился подвергнуть сомнению по­лученные определенности — некоторые из которых действительно ока­зались ложными. Но как позитивная теория о том, что является или не является обоснованным математическим доказательством, он и гроша ломаного не стоит. В действительности интуиционизм — это точное выражение солипсизма в математике. В обоих случаях наблюдается чрезмерная реакция на мысль о том, что мы не можем быть увере­ны в том, что нам известно о более отдаленном мире. В обоих случаях предложенное решение состоит в том, чтобы уйти во внутренний мир, который мы, предположительно, можем познать напрямую, и следова­тельно(?), можем быть уверены, что познали истину. В обоих случаях решение заключается в отрицании существования — или, по крайней мере, в отказе от объяснения — того, что находится вовне. И в обо­их случаях этот отказ также делает невозможным объяснение бóльшей части того, что находится внутри предпочитаемой области. Например, если действительно ложно то (как утверждают интуиционисты), что существует бесконечно много натуральных чисел, то можно сделать  {236}  вывод, что может существовать только конечное множество таких чи­сел. А сколько их может быть? И потом, сколько бы их не было, почему нельзя создать интуицию следующего натурального числа, превышаю­щего последнее? Интуиционисты оправдались бы в этом случае, ска­зав, что приведенный мной аргумент допускает обоснованность обыч­ной логики. В частности, он содержит процесс вывода: из факта, что не существует бесконечно много натуральных чисел, делается вывод, что должно существовать какое-то конкретное количество натураль­ных чисел. Применяемое в данном случае правило вывода называется законом исключенного третьего. Этот закон гласит, что для любого вы­сказывания Х (например, «существует бесконечно много натуральных чисел»), не существует третьей возможности кроме истинности Х и ис­тинности отрицания Х («существует конечное множество натуральных чисел»). Интуиционисты хладнокровно отрицают закон исключенного третьего.

Поскольку в разуме большинства людей сам закон исключенно­го третьего подкреплен мощной интуицией, его отрицание естественно вызывает у неинтуиционистов сомнение в том, так ли уж самоочевид­на надежность интуиции интуиционистов. Или, если мы сочтем, что закон исключенного третьего исходит из логической интуиции, он при­водит нас к пересмотру вопроса о том, действительно ли математи­ческая интуиция превосходит логику. В любом случае может ли это превосходство быть самоочевидным?

Но все это направлено на критику интуиционизма извне. Это не опровержение: интуиционизм невозможно опровергнуть вообще. Если кто-либо настаивает, что для него очевидно самосогласованное выска­зывание, как если бы он настаивал на том, что существует только он один, доказать его неправоту невозможно. Однако, как и в случае с со­липсизмом, воистину роковая ошибка интуиционизма открывается не тогда, когда на него нападают, а тогда, когда его всерьез принима­ют, на его же собственной основе, в качестве объяснения своего соб­ственного, произвольно усеченного мира. Интуиционисты верят в ре­альность конечного множества натуральных чисел 1, 2, 3,..., и даже 10 949 769 651 859. Но интуитивный аргумент, что поскольку за каждым из этих чисел следует ещё одно, значит, они образуют бесконечную последовательность, интуиционисты считают не более чем самообма­ном или искусственностью и буквально несостоятельным. Но усиливая связь между своей версией абстрактных «натуральных чисел» и ин­туицией,  {237}  что первоначально эти числа должны были быть формализо­ваны, интуиционисты также сами отрицают обычную объяснительную структуру, через которую понимают натуральные числа. Это вызывает проблему для каждого, кто предпочитает объяснения необъясненным усложнениям. Вместо того чтобы решить эту проблему, предоставив для натуральных чисел альтернативную или более глубокую объяс­нительную структуру, интуиционизм делает то же самое, что делала Инквизиция и что делали солипсисты: он ещё дальше уходит от объ­яснений. Он вводит дальнейшие необъясненные усложнения (в данном случае отрицание закона исключенного третьего), единственная цель которых состоит в том, чтобы позволить интуиционистам вести себя так, как если бы объяснения их противников были истинными, но не делая из этого никаких выводов относительно реальности.

Точно так же как солипсизм начинается с мотивации упрощения пугающе разнообразного и неопределенного мира, но при серьезном к нему отношении оказывается реализмом в сочетании с нескольки­ми ненужными усложнениями, так и интуиционизм оканчивается тем, что становится одной из самых контринтуитивных доктрин, которые когда-либо всерьез пропагандировали.

Дэвид Гильберт предложил гораздо более разумный — хотя, в ко­нечном счете, и обреченный — план «раз и навсегда ввести убежден­ность в математических методах». План Гильберта основывался на идее согласованности. Он надеялся составить полный набор современных правил вывода математических доказательств с определенными свой­ствами. Количество таких правил должно было быть конечным. Они должны были быть применимы напрямую, так чтобы определить, удов­летворяет ли им какое-то предложенное доказательство, не составляло бы труда и не вызывало противоречий. Желательно, чтобы эти прави­ла были интуитивно самоочевидными, но это не было первостепенным требованием для прагматичного Гильберта. Он был бы удовлетворен, если бы правила лишь умеренно соответствовали интуиции при усло­вии, что он мог бы быть уверен в их самосогласованности. То есть, если правила определили данное доказательство как обоснованное, он хотел быть уверен, что они никогда не определят как обоснованное любое другое доказательство с противоположным выводом. Как он мог быть уверен в этом? На этот раз согласованность должна была быть дока­зана с помощью метода доказательства, который сам придерживался тех же правил вывода. Таким образом, Гильберт надеялся восстановить  {238}  завершенность и определенность Аристотеля. Он также надеялся, что с помощью этих правил будет, в принципе, доказуемо любое истин­ное математическое утверждение и не будет доказуемо любое ложное утверждение. В 1900 году в ознаменование начала века Гильберт опуб­ликовал список задач, которые, как он надеялся, математики смогут решить в двадцатом веке. Десятая задача заключалась в нахождении набора правил вывода с вышеуказанными свойствами и доказательстве их состоятельности в соответствии с их собственными нормами.

Гильберту было предначертано пережить разочарование. Тридцать один год спустя Курт Гёдель создал революционную теорию доказа­тельства с коренным опровержением, которая до сих пор является от­правной точкой для математического и физического миров: он доказал, что десятая задача Гильберта не имеет решения. Во-первых, Гёдель доказал, что любой набор правил вывода, способный правильно обос­новать даже доказательства обычной арифметики, никогда не сможет обосновать доказательство своей собственной согласованности. Следо­вательно, нечего и надеяться найти доказуемо согласованный набор правил, который предвидел Гильберт. Во-вторых, Гёдель доказал, что если какой-то набор правил вывода в некоторой (достаточно обширной) области математики является согласованным (неважно, доказуемо это или нет), то в пределах этой области должны существовать обоснован­ные методы доказательства, которые эти правила не могут определить как обоснованные. Это называется теоремой Гёделя о неполноте. Для доказательства своих теорем Гёдель пользовался замечательным рас­ширением «диагонального доказательства» Кантора, о котором я упоми­нал в главе 6. Он начал с рассмотрения любого согласованного набора правил вывода. Затем он показал, как составить утверждение, кото­рое невозможно ни доказать, ни опровергнуть с помощью этих правил. Затем он доказал, что это высказывание истинно.

Если бы программа Гильберта работала, это было бы плохой но­востью для концепции реальности, выдвигаемой мной в этой книге, поскольку это устранило бы необходимость понимания при критике математических идей. Кто угодно — или какая угодно неразумная ма­шина, — способный выучить наизусть правила вывода, на которые так надеялся Гильберт, смог бы так же хорошо оценивать математичес­кие высказывания, как и самый способный математик, не нуждаясь в математическом понимании или даже не имея самого отдаленного понятия о смысле этого высказывания. В принципе, было бы возможно  {239}  делать новые математические открытия, не зная математики вообще, а зная только правила Гильберта. Можно было бы просто проверять все возможные строки букв и математических символов в алфавитном порядке, пока одна из них не удовлетворила бы проверке на то, является ли она доказательством какой-либо знаменитой недоказанной гипотезы или нет. В принципе, так можно было бы уладить любое разногласие в математике, даже не понимая его смысла — даже не зная значения символов, не говоря уж о понимании принципа действия доказательства или того, что оно доказывает, или в чем заключается метод доказатель­ства, или почему оно надежно.

Может показаться, что достижение единых норм доказательства в математике могло бы, по крайней мере, помочь нам во всеобщем стремлении к объединению — то есть «углублению» нашего знания, на которое я ссылался в главе 1. Однако происходит обратное. Подобно предсказательной «теории всего» в физике, правила Гильберта почти ничего не сказали бы нам о структуре реальности. Они реализовали бы, в пределах математики, предельное видение редукционистов, пред­сказывающее все (в принципе), но ничего не объясняющее. Более того, если бы математика была редукционистской наукой, то все нежелае­мые черты, которые, как я доказал в главе 1, отсутствуют в структуре человеческого знания, присутствовали бы в математике: математичес­кие идеи создали бы иерархию, в основе которой лежали бы правила Гилберта. Математические истины, проверка которых, исходя из этих правил, оказалась бы очень сложна, стали бы объективно менее фунда­ментальными, чем те, которые можно было бы немедленно проверить с помощью этих правил. Поскольку мог существовать только конечный набор таких фундаментальных истин, со временем математике при­шлось бы заниматься даже менее фундаментальными задачами. Мате­матика вполне могла исчерпать себя при этой зловещей гипотезе. Если бы этого не произошло, она неизбежно распалась бы на даже более за­гадочные специализации, по мере увеличения сложности «исходящих» вопросов, которые математики были бы вынуждены решать, и по мере ещё большего отдаления этих вопросов от основ самого предмета.

Благодаря Гёделю мы знаем, что никогда не будет непреложного метода определения истинности математического высказывания, как не существует и непреложного метода определения истинности науч­ной теории. Как никогда не будет и непреложного метода создания ново­го математического знания. Следовательно, математический прогресс  {240}  всегда будет зависеть от использования творчества. Изобретение новых видов доказательства всегда будет возможно и необходимо для мате­матиков. Они будут обосновывать их с помощью новых аргументов и новых способов объяснения, зависящих от их непрерывно увеличиваю­щегося понимания абстрактных категорий, связанных с этим доказа­тельством. Примером служат теоремы самого Гёделя: чтобы доказать их, ему пришлось изобрести новый метод доказательства. Я сказал, что этот метод был основан на «диагональном доказательстве», одна­ко Гёдель по-новому расширил это доказательство. До него так ничего не доказывали; никакие правила вывода, составленные кем-либо, кто никогда не видел метода Гёделя, не могли бы определить его как об­основанный. Однако он является самоочевидно обоснованным. Откуда исходит эта самоочевидность? Она исходит из понимания Гёделем при­роды доказательства. Доказательства Гёделя так же неоспоримы, как и любые другие математические доказательства, но только для того, кто прежде поймет сопровождающее их объяснение.

Таким образом, объяснение всё-таки играет ту же самую первосте­пенную роль в чистой математике, как оно играет её в науке. Объясне­ние и понимание мира — физического мира и мира математических аб­стракций — в обоих случаях является целью изучения. Доказательство и наблюдения — это всего лишь средства проверки наших объяснений.

Роджер Пенроуз извлек из результатов Гёделя ещё более глубо­кий, радикальный и достойный Платона урок. Как и Платона, Пенроуза восхищает способность человеческого разума постигать абстрактные определенности математики. В отличие от Платона Пенроуз не верит в сверхъестественное и принимает как само собой разумеющееся, что мозг — часть естественного мира и имеет доступ только к этому ми­ру. Таким образом, задача для него встает даже более остро, чем для Платона: как может беспорядочный, ненадежный мир давать математи­ческие определенности такой беспорядочной и ненадежной части себя, какой является математик? В частности, Пенроуза удивляет, как мы можем понять безошибочность новых обоснованных форм доказатель­ства, которых, как уверяет Гёдель, бесконечно много.

Пенроуз всё ещё работает над подробным ответом, но он заявля­ет, что само существование свободной математической интуиции та­кого рода фундаментально несовместимо с существующей структурой физики и, в частности, с принципом Тьюринга. Вкратце его доказа­тельство выглядит примерно так. Если принцип Тьюринга истинный,  {241}  то мы можем рассматривать мозг (подобно любому другому объекту) как компьютер, обрабатывающий определенную программу. Взаимо­действия мозга с окружающей средой составляют вводимые и выво­димые данные. Теперь рассмотрим математика в процессе решения, обоснован или нет недавно предложенный вид доказательства. Приня­тие такого решения эквивалентно обработке компьютерной программы обоснования доказательства в мозге математика. Такая программа ре­ализует набор правил вывода Гильберта, которые, в соответствии с те­оремой Гёделя, не могут быть законченными. Более того, как я уже сказал, Гёдель предоставляет способ создания и доказательства истин­ного высказывания, которое эти правила не способны признать дока­занным. Следовательно, математик, разум которого является эффек­тивным компьютером, применяющим эти правила, также никогда не сможет признать это высказывание доказанным. Затем Пенроуз пред­лагает показать этому самому математику это высказывание и метод доказательства его истинности Гёделем. Математик понимает доказа­тельство. Оно всё-таки самоочевидно обоснованно, поэтому математик, вероятно, сможет увидеть, что оно обоснованно. Но это бы противоре­чило теореме Гёделя. Следовательно, где-то в доказательстве должно быть ложное допущение, и Пенроуз считает, что этим ложным допуще­нием является принцип Тьюринга.

Большинство специалистов по вычислительной технике не соглас­ны с Пенроузом, что принцип Тьюринга — наиболее слабое звено в его доказательстве. Они сказали бы, что математик из его доказательства в самом деле не сможет признать высказывание Гёделя доказанным. Может показаться странным, почему математик вдруг не сможет по­нять самоочевидное доказательство. Но взгляните на следующее вы­сказывание:


Дэвид Дойч не может составить последовательное суждение об ис­тинности этого утверждения.


Я стараюсь изо всех сил, но не могу составить последовательное суждение о его истинности. Поскольку, если бы я сделал это, я бы соста­вил суждение о том, что я не могу составить суждение о его истинности, и вступил бы в противоречие с самим собой. Однако вы видите, что оно истинно, не так ли? Это показывает, что высказывание, по крайней ме­ре, может быть необъяснимым для одного человека, но самоочевидно истинным для всех остальных.  {242} 

В любом случае Пенроуз надеется на новую фундаментальную те­орию физики, которая заменит как квантовую теорию, так и общую теорию относительности. Она давала бы новые предсказания, которые можно проверить, хотя она, безусловно, не противоречила бы ни кван­товой теории, ни теории относительности во всех существующих на­блюдениях. (Не существует известных экспериментальных примеров, опровергающих такие теории). Однако мир Пенроуза по своей сути весьма отличен от того, что описывает существующая физика. Его ос­новной структурой реальности является то, что мы называем миром математических абстракций. В этом отношении Пенроуз, реальность которого включает все математические абстракции, но, вероятно, не все абстракции (подобные чести и справедливости), находится где-то между Платоном и Пифагором. То, что мы называем физическим ми­ром, является для него вполне реальным (ещё одно отличие от Пла­тона), но каким-то образом это является частью самой математики, или вытекает из неё. Более того, в его мире не существует универ­сальности; в частности, не существует машины, способной передать все возможные мыслительные процессы людей. Однако мир (конечно, в особенности его математическое основание), тем не менее, остает­ся постижимым. Его постижимость гарантирована не универсальнос­тью вычислений, а явлением, достаточно новым для физики (хотя и не для Платона): математические категории напрямую взаимодействуют с человеческим мозгом через физические процессы, которые ещё пред­стоит открыть. Таким образом, мозг, по Пенроузу, занимается матема­тикой, ссылаясь не только на то, что мы сейчас называем физическим миром. Он имеет прямой доступ к реальности математических Форм Платона и может постичь там математические истины (за исключени­ем грубых ошибок) с абсолютной определенностью.

Часто предполагают, что мозг может быть квантовым компьюте­ром и что его интуиция, сознание и способности к решению задач могут зависеть от квантовых вычислений. Возможно, это и так, но я не знаю ни свидетельств, ни убедительных аргументов в пользу этого. Я став­лю на то, что мозг, если его рассматривать как компьютер, является классическим компьютером. Но этот вопрос не имеет никакого отноше­ния к идеям Пенроуза. Пенроуз не доказывает, что мозг — это новый вид универсального компьютера, который отличается от универсаль­ного квантового компьютера тем, что имеет бóльший репертуар вы­числений, которые стали возможны только при новой пост-квантовой  {243}  физике. Он доказывает новую физику, которая не будет поддерживать универсальность вычислений, так что при его новой теории вообще не­возможно будет объяснять некоторые действия мозга как вычисления.

Должен признать, что для меня такая теория непостижима. Однако фундаментальные открытия всегда трудно понять до того, как они про­изойдут. Естественно, трудно оценить теорию Пенроуза, прежде чем он сформулирует её полностью. Если теория со свойствами, на которые он надеется, в конце концов, вытеснит квантовую теорию, или теорию общей относительности, или и ту, и другую через экспериментальные проверки или предоставив более глубокий уровень объяснений, то каж­дый разумный человек захочет её принять. И тогда мы отправимся в путешествие постижения нового мировоззрения, к принятию кото­рого будет вынуждать нас объяснительная структура этой теории. Ве­роятно, это мировоззрение будет весьма отличным от представленного мной в этой книге. Однако, даже если все это пришло, чтобы уйти, я все равно не могу понять, каким образом можно удовлетворить пер­воначальную мотивацию теории, которая объясняет нашу способность понимать новые математические доказательства. Все равно останется тот факт, что сейчас, да и во всей истории великие математики об­ладали различной противоречивой интуицией относительно обоснован­ности различных методов доказательства. Поэтому, даже если истин­но то, что абсолютная физико-математическая реальность поставляет свои истины прямо в наш мозг для создания математической интуи­ции, математики не всегда способны отличить эту интуицию от другой, ошибочной интуиции и от других, ошибочных идей. К сожалению, нет ни колокольчика, который звонит, ни фонарика, который вспыхивает, когда мы понимаем действительно обоснованное доказательство. Порой мы можем ощутить такую вспышку, в момент «эврики», — и, тем не менее, ошибиться. И даже если бы теория предсказала, что существует некий, не замеченный ранее физический индикатор, сопровождающий истинную интуицию (сейчас это становится в высшей степени невоз­можным), мы бы определенно нашли его полезным, но это все равно не было бы равносильно доказательству того, что этот индикатор работа­ет. Ничто не способно доказать, что однажды ещё лучшая физическая теория не вытеснит теорию Пенроуза и не откроет, что предложенный индикатор всё-таки не был надежным и что существует лучший инди­катор. Таким образом, даже если мы сделаем все возможные скидки предложению Пенроуза, если мы вообразим, что оно истинно, и взглянем  {244}  на мир с его позиций, это все равно не поможет нам объяснить подозрительную определенность знания, которое мы приобретаем, за­нимаясь математикой.

Я отразил лишь общий смысл аргументов Пенроуза и его оппонен­тов. Читатель поймет, что, в сущности, я на стороне его оппонентов. Однако даже если признать, что геделианское доказательство Пенроуза не доказывает то, что намеревается доказать, и кажется невероятным, что предложенная им новая физическая теория объясняет то, что на­меревается объяснить, Пенроуз, тем не менее, прав, что любое миро­воззрение, основанное на существующей концепции научного рациона­лизма, создает задачу для принятых основ математики (или, как вы­разил бы это Пенроуз, наоборот). Это древняя задача, которую поднял Платон, задача, которая, как показывает Пенроуз, обостряется в све­те как теоремы Гёделя, так и принципа Тьюринга. Эта задача заклю­чается в следующем: откуда исходит математическая определенность в реальности, состоящей из физики и понимаемой с помощью научных методов? В то время как большинство математиков и специалистов по вычислительной технике принимают определенность математической интуиции как нечто, само собой разумеющееся, они не воспринимают проблему примирения этого факта с научным мировоззрением всерь­ез. Пенроуз серьезно относится к этой проблеме и предлагает решение. Его предложение представляет постижимый мир в определенном аспек­те, отвергает сверхъестественное, признает важность творчества для математики, приписывает объективную реальность как физическому миру, так и абстрактным категориям и включает объединение основ математики и физики. Во всех этих отношениях я на его стороне.

Поскольку попытки Брауэра, Гильберта, Пенроуза и всех осталь­ных решить сложную задачу Платона, видимо, потерпели неудачу, стоит снова взглянуть на мнимое ниспровержение Платоном идеи о том, что математическую истину можно получить с помощью на­учных методов.

Прежде всего, Платон говорит нам, что, поскольку мы имеем до­ступ только (скажем) к несовершенным кругам, значит, через них мы не сможем получить знание о совершенных кругах. А почему нет? Точ­но так же можно было бы сказать, что мы не можем открыть законы движения планет, потому что у нас нет доступа к реальным планетам, а есть доступ только к их изображениям. (Инквизиция это и говори­ла, и я объяснил, почему она ошибалась). Также можно было бы ска­зать,  {245}  что невозможно построить точные станки, потому что первый такой станок пришлось бы строить с помощью неточных станков. Ог­лянувшись назад, можно увидеть, что такая критика вызвана очень грубым изображением принципа действия науки (подобным индукти­визму), который вряд ли можно считать удивительным, поскольку Пла­тон жил до того, что мы могли бы признать как науку. Если, скажем, единственный способ узнать что-либо о кругах из опыта заключается в том, чтобы исследовать тысячи физических кругов, а потом, из со­бранных данных, попытаться сделать какой-то вывод об их абстракт­ных евклидовых двойниках, то Платон уловил суть. Но если мы созда­дим гипотезу, что реальные круги точно определенным образом похожи на абстрактные, и окажемся правы, то мы определенно можем узнать что-либо об абстрактных кругах, глядя на реальные. В геометрии Ев­клида часто используют рисунки для точного определения геометри­ческой задачи или её решения. В таком методе описания существует возможность ошибки, если несовершенство кругов на рисунке оставит впечатление, вводящее в заблуждение, — например, если кажется, что два круга касаются друг друга, хотя на самом деле этого не происхо­дит. Но, поняв отношение между реальными и совершенными кругами, можно аккуратно исключить все подобные ошибки. А не понимая этого отношения, практически невозможно понять геометрию Евклида.

Надежность знания о совершенном круге, которое можно получить из изображения круга, полностью зависит от точности гипотезы о том, что эти круги похожи должным образом. Такая гипотеза в отношении физического объекта (рисунка) эквивалентна физической теории, и её невозможно знать определенно. Но этот факт (как утверждал Платон) не мешает изучению совершенных кругов из опыта; он делает невоз­можной определенность. Он не должен расстраивать никого, кто ищет не определенность, а объяснения.

Геометрию Евклида можно абстрактно сформулировать без рисун­ков. Но использование цифр, букв и математических символов в симво­лическом доказательстве способно породить ничуть не бóльшую опре­деленность, чем рисунок по той же самой причине. Символы — это тоже физические объекты, — скажем, чернильные пятна на бумаге, — ко­торые обозначают абстрактные объекты. И опять мы полностью пола­гаемся на гипотезу, что физическое поведение символов соответствует поведению обозначаемых ими абстракций. Следовательно, надежность того, что мы узнаем, манипулируя этими символами, полностью зависит  {246}  от точности наших теорий об их физическом поведении и о пове­дении наших рук, глаз и т. д., с помощью которых мы манипулируем этими символами и наблюдаем за ними. Обманчивые чернила, из-за которых случайный символ изменил свой внешний вид, когда мы не видели этого, — возможно, под дистанционным управлением какого-то шутника, обладающего практической реализацией высоких техноло­гий, — вскоре введут нас в заблуждение относительно того, что мы «определенно» знаем.

Теперь давайте повторно исследуем ещё одно допущение Платона: допущение о том, что у нас нет доступа к совершенству физического мира. Возможно, он прав в том, что мы не найдем совершенной чести или справедливости, и он конечно прав в том, что мы не найдем законы физики или множество всех натуральных чисел. Но мы можем найти совершенную руку в бридже или совершенный ход в данной шахматной позиции. Это все равно, что сказать, что мы можем найти физические объекты или процессы, которые полностью обладают свойствами точно определенных абстракций. Мы можем научиться игре в шахматы как с помощью реальных шахмат, так и с помощью совершенной формы шахмат. Тот факт, что коня срубили, не делает мат, который является результатом этого, менее окончательным.

Поскольку все это имеет место, совершенный евклидов круг мож­но сделать доступным для наших чувств. Платон не осознавал этого, потому что он не знал о существовании виртуальной реальности. Не со­ставит особого труда запрограммировать в генераторы виртуальной ре­альности, о которых я размышлял в главе 5, правила геометрии Евкли­да, так что пользователь сможет получить впечатление взаимодействия с совершенным кругом. Не имея толщины, круг был бы невидимым, по­ка мы также не модифицировали бы законы оптики, для этого мы могли бы освещать его, чтобы пользователь знал, где он находится. (Пуристы, возможно, предпочли бы обойтись без этого декорирования). Мы мог­ли бы сделать этот круг твердым и непроницаемым, и пользователь мог бы проверить его свойства с помощью твердых, непроницаемых инструментов, а также средств измерения. Виртуальные штангенцир­кули имели бы совершенную кромку толщиной с лезвие ножа, так что они могли бы точно измерить нулевую толщину. Пользователю можно было бы позволить «нарисовать» ещё круги или другие геометричес­кие фигуры в соответствии с правилами геометрии Евклида. Разме­ры инструментов и самого пользователя можно было бы регулировать  {247}  по желанию, чтобы обеспечить проверку предсказаний геометричес­ких теорем в любом масштабе, сколь угодно малом. В каждом случае переданный круг мог бы реагировать точно так же, как круг, опре­деленный в аксиомах Евклида. Таким образом, на основе современной науки мы должны сделать вывод, что в этом отношении Платон мыс­лил наоборот. Мы можем воспринять совершенные круги в физической реальности (т. е. в виртуальной реальности); но мы никогда не воспри­мем их в области Форм, поскольку, если и можно сказать, что такая область существует, мы никак её не воспринимаем.

Идея Платона о том, что физическая реальность состоит из не­совершенных копий абстракций, сегодня случайно кажется чрезмерно асимметричной позицией. Как и Платон, мы всё ещё изучаем абстрак­ции ради их самих. Однако в науке после Галилео и в теории вирту­альной реальности мы также рассматриваем абстракции как средст­во понимания реальных или искусственных физических категорий, и в этом контексте мы считаем само собой разумеющимся, что абстрак­ции почти всегда являются приближениями истинной физической ситу­ации. Таким образом, несмотря на то, что Платон считал земные кру­ги, нарисованные на песке, приближениями истинных математических кругов, современный физик посчитал бы математический круг плохим приближением истинной формы планетарных орбит, атомов и других физических объектов.

При условии, что всегда будет существовать возможность выхо­да из строя генератора виртуальной реальности или его пользователя, можно ли действительно говорить о достижении совершенной передачи евклидова круга в виртуальной реальности в соответствии с нормами математической определенности? Можно. Никто не претендует на то, что сама математика свободна от неопределенности такого рода. Ма­тематики могут ошибиться в вычислении, исказить аксиомы, сделать опечатки при изложении своей собственной работы и т. д. Мы претенду­ем на то, что, за исключением грубых ошибок, их выводы безошибочны. Точно так же генератор виртуальной реальности, работая должным об­разом в соответствии со своими техническими характеристиками, в со­вершенстве передал бы совершенный евклидов круг.

Подобным образом мы могли бы возразить, что мы никогда не мо­жем точно сказать, как поведет себя генератор виртуальной реальности под управлением данной программы, потому что это зависит от функ­ционирования машины и, в конечном счете, от законов физики.  {248}  Поскольку нам не дано с полной уверенностью знать законы физики, мы не можем точно знать, что машина действительно передает геометрию Евклида. И опять, никто не отрицает, что непредвиденные физические явления — станут ли они следствием неизвестных законов физики, или просто заболевания мозга или обманчивых чернил — могут сбить ма­тематика с правильного пути. Но если законы физики находятся в со­ответствующих отношениях, как мы и полагаем, то генератор вирту­альной реальности в совершенстве может сделать свою работу, даже несмотря на то, что мы не можем определенно знать, что он это дела­ет. Здесь следует проявить внимательность, чтобы не перепутать два вопроса: можем ли мы знать, что машина виртуальной реальности пе­редает совершенный круг; и действительно ли она передает его. Мы не можем точно знать это, но это ни на йоту не уменьшает совершен­ство круга, который фактически передает машина. Я вернусь к этому важному различию — между совершенным знанием (определенностью) относительно какой-либо категории, и «совершенством» самой катего­рии — очень скоро.

Допустим, что мы намеренно модифицируем программу, передаю­щую геометрию Евклида, так, что генератор виртуальной реальности по-прежнему будет передавать круги достаточно хорошо, но менее, чем совершенно. Разве мы не смогли бы сделать какой-либо вывод о совер­шенных кругах, ощущая эту несовершенную передачу? Это полностью зависело бы от того, знали бы мы, в каких отношениях была изменена программа или нет. Если бы мы это знали, мы могли бы с определен­ностью решить (за исключением грубых ошибок и т. д.), какие аспекты ощущений, полученных нами внутри машины, представляли совершен­ные круги точно, а какие неточно. И в этом случае знание, которое мы приобрели там, было бы так же надежно, как и любое знание, которое мы приобрели бы, используя правильную программу.

Представляя круги, мы осуществляем передачу в виртуальной ре­альности почти такого же рода в своем мозге. Причина того, почему этот способ мышления о кругах не бесполезен, состоит в том, что мы можем создать точные теории о том, какими свойствами совершенных кругов обладают воображаемые нами круги, а какими нет.

Используя совершенную передачу в виртуальной реальности, мы могли бы получить впечатление о шести идентичных кругах, которые касаются кромки седьмого идентичного им круга в плоскости, не пере­крывая друг друга. Это впечатление при подобных обстоятельствах бы­ло  {249}  бы эквивалентно точному доказательству возможности такой ситу­ации, потому что геометрические свойства переданных форм были бы абсолютно идентичны геометрическим свойствам абстрактных форм. Но такой вид «практического» взаимодействия с совершенными форма­ми не способен дать всестороннее знание геометрии Евклида. Бóльшая часть интересных теорем относится не к одной геометрической фор­ме, а к бесконечным классам геометрических форм. Например, сумма углов любого треугольника Евклида равна 180°. Мы можем измерить отдельные треугольники с совершенной точностью в виртуальной ре­альности, но даже в виртуальной реальности мы не можем измерить все треугольники, и поэтому мы не можем проверить теорему.

Как же мы можем её проверить? Мы доказываем её. Традицион­но доказательство определяют как последовательность утверждений, удовлетворяющих самоочевидным правилам вывода, но чему физичес­ки эквивалентен процесс доказательства? Чтобы доказать утверждение о бесконечно большом количестве треугольников сразу, мы исследуем определенные физические объекты (в данном случае символы), которые обладают общими свойствами с целым классом треугольников. Напри­мер, когда при надлежащих обстоятельствах мы наблюдаем символы «DАВС=DDEF» (т. е. «треугольник АВС конгруэнтен треугольнику DEF»), мы делаем вывод, что все треугольники из какого-то определен­ного конкретным образом класса всегда имеют ту же самую форму, что и соответствующие им треугольники из другого класса, определенного иначе. «Надлежащие обсто­я­тель­ства», которые придают этому выводу статус доказательства, заключаются, говоря языком физики, в том, что символы появляются на странице под другими символами (некото­рые из которых представляют аксиомы геометрии Евклида), и порядок появления символов соответствует определенным правилам, а именно, правилам вывода.

Но какими правилами вывода нам следует пользоваться? Это все равно, что спросить, как следует запрограммировать генератор вирту­альной реальности для передачи мира геометрии Евклида. Ответ в том, что нужно использовать те правила вывода, которые, для нашего луч­шего понимания, заставят наши символы вести себя в уместной степе­ни как абстрактные категории, которые они обозначают. Как мы мо­жем быть уверены, что они будут вести себя именно так? А мы и не можем быть уверены в этом. Предположим, что некоторые крити­ки возражают против наших правил вывода, потому что они считают,  {250}  что наши символы будут вести себя отлично от абстрактных катего­рий. Мы не можем ни взывать к авторитету Аристотеля или Платона, ни доказать, что наши правила вывода безошибочны (за исключением теоремы Гёделя, это привело бы к бесконечному регрессу, ибо сначала нам пришлось бы доказать обоснованность самого метода доказательст­ва, используемого нами). Не можем мы и надменно сказать критикам, что у них что-то не в порядке с интуицией, потому что наша инту­иция говорит, что символы будут копировать абстрактные категории в совершенстве. Все, что мы можем сделать, — это объяснить. Мы должны объяснить, почему мы думаем, что при определенных обстоя­тельствах символы будут вести себя желаемым образом в соответствии с высказанными нами правилами. А критики могут объяснить, поче­му они предпочитают теорию, конкурирующую с нашей. Расхождение во мнениях относительно двух таких теорий — это частично расхож­дение во мнениях относительно наблюдаемого поведения физических объектов. Такого рода расхождения могут быть адресованы нормаль­ными методами науки. Иногда они легко разрешимы, а иногда — нет. Другой причиной подобного расхождения может стать концептуаль­ный конфликт, связанный с природой самих абстрактных категорий. И вновь дело за конкурирующими объяснениями, на этот раз объяс­нениями не физических объектов, а абстрактных категорий. Либо мы придем к общему пониманию со своими критиками, либо согласим­ся, что говорим о двух различных абстрактных объектах, либо вообще не придем к согласию. Нет никаких гарантий. Таким образом, в про­тивоположность традиционному убеждению, споры в математике не всегда можно разрешить с помощью исключительно методологических средств.

На первый взгляд, характер традиционного символического доказа­тельства кажется весьма отличным от характера «практического» вир­туального доказательства. Но теперь мы видим, что они относятся друг к другу так же, как вычисления относятся к физическим эксперимен­там. Любой физический эксперимент можно рассматривать как вы­числение, и любое вычисление — как физический эксперимент. В обо­их видах доказательства физическими категориями (независимо от то­го, находятся они в виртуальной реальности или нет) манипулируют в соответствии с правилами. В обоих видах доказательства физичес­кие категории представляют интересующие нас абстрактные катего­рии. И в обоих случаях надежность доказательства зависит от истин­ности  {251}  теории о том, что физические и абстрактные категории дейст­вительно имеют соответствующие свойства.

Из вышеизложенного рассуждения также можно увидеть, что до­казательство — это физический процесс. В действительности, доказа­тельство — это разновидность вычисления. «Доказать» высказывание значит осуществить вычисление, которое, будучи выполненным пра­вильно, устанавливает истинность высказывания. Используя слово «до­казательство» для обозначения объекта, например, текста, написанно­го чернилами на бумаге, мы имеем в виду, что этот объект можно использовать в качестве программы для воссоздания вычисления соот­ветствующего вида.

Следовательно, ни математические теоремы, ни процесс матема­тического доказательства, ни впечатление о математической интуиции не подтверждает никакую определенность. Ничто не подтверждает её. Наше математическое знание, так же как и наше научно